On one linear equation of the Euler type
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 74-83
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, for an Euler-type linear equation of order $n$, we indicate a change of variable and conditions for the coefficients under which the equation is reduced to an equation with constant coefficients. For a solution of the inhomogeneous equation, we construct an explicit integral representation depending on the roots of the characteristic equation.
Keywords:
linear equation of Euler type, model equation, characteristic of equation, fundamental solution, determinant of Vandermonde type.
@article{INTO_2021_192_a7,
author = {R. Mustafokulov},
title = {On one linear equation of the {Euler} type},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {74--83},
publisher = {mathdoc},
volume = {192},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a7/}
}
TY - JOUR AU - R. Mustafokulov TI - On one linear equation of the Euler type JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 74 EP - 83 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a7/ LA - ru ID - INTO_2021_192_a7 ER -
R. Mustafokulov. On one linear equation of the Euler type. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 74-83. http://geodesic.mathdoc.fr/item/INTO_2021_192_a7/