On bounded solutions of one class of systems of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a priori estimates and examine the existence of bounded solutions for a class of systems of ordinary differential equations whose right-hand sides have an arbitrary order of growth with respect to the independent and dependent variables. For the right-hand sides of the equations, we find one-sided estimates that provide a priori estimates for bounded solutions; using the methods for calculating the rotation of vector fields and the method of periodic cuts, we are prove theorems on the existence of periodic and bounded solutions.
Keywords: one-sided estimate, bounded solution, periodic solution, a priori estimate, rotation of a vector field.
@article{INTO_2021_192_a6,
     author = {M. M. Kobilzoda and A. N. Naimov},
     title = {On bounded solutions of one class of systems of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {65--73},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a6/}
}
TY  - JOUR
AU  - M. M. Kobilzoda
AU  - A. N. Naimov
TI  - On bounded solutions of one class of systems of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 65
EP  - 73
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a6/
LA  - ru
ID  - INTO_2021_192_a6
ER  - 
%0 Journal Article
%A M. M. Kobilzoda
%A A. N. Naimov
%T On bounded solutions of one class of systems of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 65-73
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a6/
%G ru
%F INTO_2021_192_a6
M. M. Kobilzoda; A. N. Naimov. On bounded solutions of one class of systems of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 65-73. http://geodesic.mathdoc.fr/item/INTO_2021_192_a6/

[3] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966

[4] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[5] Mukhamadiev E., “K teorii periodicheskikh reshenii sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR., 194:11 (1970), 510–513

[6] Mukhamadiev E., “K teorii ogranichennykh reshenii obyknovennykh differentsialnykh uravnenii”, Differ. uravn., 10:4 (1974), 635–646

[7] Mukhamadiev E., “Issledovaniya po teorii periodicheskikh i ogranichennykh reshenii differentsialnykh uravnenii”, Mat. zametki., 30:3 (1981), 713–722

[8] Mukhamadiev E., Naimov A. N., Sattorov A. Kh., “Ob ogranichennykh resheniyakh odnogo klassa giperbolicheskikh uravnenii na ploskosti”, Differ. uravn., 52:1 (2016), 86–93

[9] Mukhamadiev E., Naimov A. N., Sattorov A. Kh., “Analog teoremy Bolya dlya odnogo klassa lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Ufim. mat. zh., 9:1 (2017), 75–88