Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a method for constructing an asymptotic solution to a singularly perturbed Cauchy problem in the case of violation of the stability conditions for the spectrum of the limit operator. In particular, we consider a problem with a turning point where eigenvalues coincide at $t=0$.
Keywords: singularly perturbed problem, turning point, regularization method.
@article{INTO_2021_192_a5,
     author = {A. G. Eliseev and P. V. Kirichenko},
     title = {Solution of the singularly perturbed {Cauchy} problem with a ``weak'' turning point of the limit operator},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/}
}
TY  - JOUR
AU  - A. G. Eliseev
AU  - P. V. Kirichenko
TI  - Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 55
EP  - 64
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/
LA  - ru
ID  - INTO_2021_192_a5
ER  - 
%0 Journal Article
%A A. G. Eliseev
%A P. V. Kirichenko
%T Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 55-64
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/
%G ru
%F INTO_2021_192_a5
A. G. Eliseev; P. V. Kirichenko. Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 55-64. http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/

[3] Bobodzhanov A. A., Safonov V. F., “Regulyarizovannaya asimptotika reshenii integro-differentsialnykh uravnenii s chastnymi proizvodnymi s bystro izmenyayuschimisya yadrami”, Ufim. mat. zh., 10:2 (2018)

[4] Voevodin V. V., Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977

[5] Eliseev A. G., Lomov S. A., “Teoriya singulyarnykh vozmuschenii v sluchae spektralnykh osobennostei predelnogo operatora”, Mat. sb., 131 (173):4 (12) (1986), 544–-557

[6] Eliseev A. G., Salnikova T. A., “Postroenie resheniya zadachi Koshi v sluchae «slaboi» tochki povorota predelnogo operatora”, Tr. konf. «Matematicheskie metody i prilozheniya» (27-31 yanvarya 2011 g. RGSU), 2011, 46–52

[7] Kucherenko V. V., “Asimptotika resheniya sistemy $A(x,-ih{\partial}/{\partial x})$ pri $h\rightarrow 0$ v sluchae kharakteristik peremennoi kratnosti”, Izv. AN SSSR. Ser. mat., 38:3 (1974), 625–-662

[8] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981