Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_192_a5, author = {A. G. Eliseev and P. V. Kirichenko}, title = {Solution of the singularly perturbed {Cauchy} problem with a ``weak'' turning point of the limit operator}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {55--64}, publisher = {mathdoc}, volume = {192}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/} }
TY - JOUR AU - A. G. Eliseev AU - P. V. Kirichenko TI - Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 55 EP - 64 VL - 192 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/ LA - ru ID - INTO_2021_192_a5 ER -
%0 Journal Article %A A. G. Eliseev %A P. V. Kirichenko %T Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 55-64 %V 192 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/ %G ru %F INTO_2021_192_a5
A. G. Eliseev; P. V. Kirichenko. Solution of the singularly perturbed Cauchy problem with a ``weak'' turning point of the limit operator. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 55-64. http://geodesic.mathdoc.fr/item/INTO_2021_192_a5/