Mathematical modeling of limiting stress states of a thin cylindrical layer of compressible bulk material
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 125-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of limiting stress states of a thin vertical cylindrical layer filled with compressible bulk material under the action of a vertical load is considered. Parameters of the stress state are calculated. The zone of plastic deformation of the material is estimated as a function of the friction coefficients.
Keywords: mathematical modeling, limiting stress state, bulk material, axisymmetric deformation.
@article{INTO_2021_192_a13,
     author = {O. Frolova},
     title = {Mathematical modeling of limiting stress states of a thin cylindrical layer of compressible bulk material},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {125--130},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a13/}
}
TY  - JOUR
AU  - O. Frolova
TI  - Mathematical modeling of limiting stress states of a thin cylindrical layer of compressible bulk material
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 125
EP  - 130
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a13/
LA  - ru
ID  - INTO_2021_192_a13
ER  - 
%0 Journal Article
%A O. Frolova
%T Mathematical modeling of limiting stress states of a thin cylindrical layer of compressible bulk material
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 125-130
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a13/
%G ru
%F INTO_2021_192_a13
O. Frolova. Mathematical modeling of limiting stress states of a thin cylindrical layer of compressible bulk material. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 125-130. http://geodesic.mathdoc.fr/item/INTO_2021_192_a13/

[2] Bykova M. I., Verveiko N. D., Sumets P. P., Shashkina S. A., Techenie i deformirovanie materialov odnorodnoi mikrostruktury, VGU, Voronezh, 2010

[3] Bykovtsev G. I., Ivlev D. D., Teoriya plastichnosti, Dalnauka, Vladivostok, 1998

[4] Verveiko N. D., Frolov A. L., “Kinematika predelnogo osesimmetrichnogo sostoyaniya sypuchikh materialov so stsepleniem”, Problemy mekhaniki deformiruemykh tverdykh tel i gornykh porod, Sb. statei k 75-letiyu E. I. Shemyakina, Fizmatlit, M., 2006, 107–114

[5] Verveiko N. D., Frolova O. A., “Vliyanie kharakternogo razmera predstavitelnogo elementa sypuchei sredy na osesimmetrichnoe napryazhennoe sostoyanie”, Sb. tr. Mezhdunar. konf. «Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki», Voronezh, 2011, 106–109

[6] Vyalov S. S., Reologicheskie osnovy mekhaniki gruntov, Vysshaya shkola, M., 1978

[7] Ivlev D. D., Teoriya idealnoi plastichnosti, Nauka, M., 1966

[8] Sokolovskii V. V., Statika sypuchei sredy, Nauka, M., 1990

[9] Frolov A. L., “Osesimmetrichnoe deformirovanie mikropolyarnykh svyaznykh sypuchikh materialov”, Mat. shkoly-seminara, posv. 70-letiyu prof. D. D. Ivleva, Voronezh, 2000, 474–480

[10] Frolov A. L., Frolova O. A., “Osesimmetrichnoe napryazhennoe sostoyanie svyaznogo sypuchego materiala s uchetom mikrostruktury”, Vestn. Chuvash. gos. ped. un-ta. Ser. Mekh. predel. sost., 1:15 (2013), 214–221

[11] Eringen A. C., “Theory of micropolar fluid”, J. Math. Mech., 1:16 (1966), 1–16