On a mathematical model of investment management leading to a system with constant and linear delays
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 111-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model for managing investments in advertising is proposed, in which all the factors that affect the process of delivering information are taken into account. In contrast to earlier models, various different ways of disseminating information are discussed. The model considered is described by differential equations that contain constant delay, linear delay, and impulse control. For systems of this type, the notion of a solution is formalized and a theorem of the existence of a solution is proved.
Keywords: impulse control, constant delay, linear delay.
@article{INTO_2021_192_a11,
     author = {A. N. Sesekin and A. S. Shlyakhov},
     title = {On a mathematical model of investment management leading to a system with constant and linear delays},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {111--116},
     publisher = {mathdoc},
     volume = {192},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_192_a11/}
}
TY  - JOUR
AU  - A. N. Sesekin
AU  - A. S. Shlyakhov
TI  - On a mathematical model of investment management leading to a system with constant and linear delays
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 111
EP  - 116
VL  - 192
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_192_a11/
LA  - ru
ID  - INTO_2021_192_a11
ER  - 
%0 Journal Article
%A A. N. Sesekin
%A A. S. Shlyakhov
%T On a mathematical model of investment management leading to a system with constant and linear delays
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 111-116
%V 192
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_192_a11/
%G ru
%F INTO_2021_192_a11
A. N. Sesekin; A. S. Shlyakhov. On a mathematical model of investment management leading to a system with constant and linear delays. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 3, Tome 192 (2021), pp. 111-116. http://geodesic.mathdoc.fr/item/INTO_2021_192_a11/

[1] Baenkhaeva V. A., “Issledovanie optimalnogo impulsnogo upravleniya v modeli reklamnykh raskhodov”, Vestn. Buryat. gos. un-ta. Mat. Inform., 9 (2009), 18–21

[2] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Fizmatlit, M., 2003

[3] Sesekin A. N., “Dinamicheskie sistemy s nelineinoi impulsnoi strukturoi”, Tr. in-ta mat. mekh. UrO RAN., 6:2 (2000), 497–514

[4] Tsyganov V. V., Bochkareva Yu. G., “Kompleksnyi podkhod k metodologii rasprostraneniya informatsii”, Fundam. issled., 4:3 (2013), 612–617

[5] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971

[6] Dorroh J. R., Ferreyra G., “A multistate, multicontrol problem with unbounded controls”, SIAM J. Control Optim., 32:5 (1994), 1322–1331

[7] Miller B. M., Rubinovich E. Ya., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Automat. Remote Control., 74 (2013), 1969–2006

[8] Ryan B., Gross N., “The diffusion of hybrid seed corn in two Iowa communities”, Rural Sociology., 8 (1) (1943), 15–24

[9] Zavalishchin S. T., Sesekin A. N., Dynamic Impulse Systems: Theory and Applications, Kluwer Academic, Dordrecht, 1997