Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a8, author = {T. V. Klodina and N. S. Zadorozhnaya}, title = {On a change in velocities in the domain of planar and axisymmetric stationary filtration}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {101--104}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/} }
TY - JOUR AU - T. V. Klodina AU - N. S. Zadorozhnaya TI - On a change in velocities in the domain of planar and axisymmetric stationary filtration JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 101 EP - 104 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/ LA - ru ID - INTO_2021_191_a8 ER -
%0 Journal Article %A T. V. Klodina %A N. S. Zadorozhnaya %T On a change in velocities in the domain of planar and axisymmetric stationary filtration %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 101-104 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/ %G ru %F INTO_2021_191_a8
T. V. Klodina; N. S. Zadorozhnaya. On a change in velocities in the domain of planar and axisymmetric stationary filtration. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 101-104. http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/
[5] Klodina T. V., Zadorozhnaya N. S., “Teorema ob izmenenii davleniya pri deformatsii linii toka”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach», IPTs «Nauchnaya kniga», Voronezh, 2014, 89–90
[6] Klodina T. V., Zadorozhnaya N. S., “Teorema ob otsenki naporov dlya odnogo vida kraevykh uslovii oblasti filtratsii”, Mat. Mezhdunar. nauch.-prakt. konf. «Innovatsionnye protsessy v nauchnoi srede» (Ufa, 7 maya 2014 g.), Aeterna, Ufa, 2014, 29–32
[7] Klodina T. V., Zadorozhnaya N. S., “Reshenie zadachi filtratsii”, Transport: nauka, obrazovanie, proizvodstvo. Tekhnicheskie i estestvennye nauki, Rostov-na-Donu, 2016, 269–271 (in Russian)
[8] Klodina T. V., Zadorozhnaya N. S., “Nakhozhdenie naporov pod gibkim flyutbetom pri nalichii v osnovanii dreniruyuschego sloya neogranichennoi moschnosti”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach», IPTs «Nauchnaya kniga», Voronezh, 2016, 147–148
[9] Klodina T. V., Zadorozhnaya N. S., “Teorema ob izmenenii raskhoda zhidkosti pri reshenii odnoi zadachi statsionarnoi filtratsii”, Mat. Mezhdunar. konf., posv. 100-letiyu so dnya rozhdeniya S. G. Kreina (Voronezh, 13–17 noyabrya 2017 g.), Izdatelskii dom VGU, Voronezh, 2017, 116–117
[10] Lyashko I. I., Velikoivanenko I. I., Lavrik V. I., Mistetskii G. E., Metod mazhorantnykh oblastei v teorii filtratsii, Naukova dumka, Kiev, 1974 | MR
[11] Polozhii G. N., Teoriya i primenenie $p$-analiticheskikh i $(p,g)$-analiticheskikh funktsii, Naukova dumka, Kiev, 1973