On a change in velocities in the domain of planar and axisymmetric stationary filtration
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 101-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose theorems on the change in velocities in boundary-value problems of planar and axisymmetric stationary filtration. The proofs are based on the method of majorant domains proposed by G. N. Polozhii.
Keywords: filtration theory
Mots-clés : method of majorant domains.
@article{INTO_2021_191_a8,
     author = {T. V. Klodina and N. S. Zadorozhnaya},
     title = {On a change in velocities in the domain of planar and axisymmetric stationary filtration},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {101--104},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/}
}
TY  - JOUR
AU  - T. V. Klodina
AU  - N. S. Zadorozhnaya
TI  - On a change in velocities in the domain of planar and axisymmetric stationary filtration
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 101
EP  - 104
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/
LA  - ru
ID  - INTO_2021_191_a8
ER  - 
%0 Journal Article
%A T. V. Klodina
%A N. S. Zadorozhnaya
%T On a change in velocities in the domain of planar and axisymmetric stationary filtration
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 101-104
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/
%G ru
%F INTO_2021_191_a8
T. V. Klodina; N. S. Zadorozhnaya. On a change in velocities in the domain of planar and axisymmetric stationary filtration. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 101-104. http://geodesic.mathdoc.fr/item/INTO_2021_191_a8/

[5] Klodina T. V., Zadorozhnaya N. S., “Teorema ob izmenenii davleniya pri deformatsii linii toka”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach», IPTs «Nauchnaya kniga», Voronezh, 2014, 89–90

[6] Klodina T. V., Zadorozhnaya N. S., “Teorema ob otsenki naporov dlya odnogo vida kraevykh uslovii oblasti filtratsii”, Mat. Mezhdunar. nauch.-prakt. konf. «Innovatsionnye protsessy v nauchnoi srede» (Ufa, 7 maya 2014 g.), Aeterna, Ufa, 2014, 29–32

[7] Klodina T. V., Zadorozhnaya N. S., “Reshenie zadachi filtratsii”, Transport: nauka, obrazovanie, proizvodstvo. Tekhnicheskie i estestvennye nauki, Rostov-na-Donu, 2016, 269–271 (in Russian)

[8] Klodina T. V., Zadorozhnaya N. S., “Nakhozhdenie naporov pod gibkim flyutbetom pri nalichii v osnovanii dreniruyuschego sloya neogranichennoi moschnosti”, Mat. Voronezh. vesennei mat. shkoly «Sovremennye metody teorii kraevykh zadach», IPTs «Nauchnaya kniga», Voronezh, 2016, 147–148

[9] Klodina T. V., Zadorozhnaya N. S., “Teorema ob izmenenii raskhoda zhidkosti pri reshenii odnoi zadachi statsionarnoi filtratsii”, Mat. Mezhdunar. konf., posv. 100-letiyu so dnya rozhdeniya S. G. Kreina (Voronezh, 13–17 noyabrya 2017 g.), Izdatelskii dom VGU, Voronezh, 2017, 116–117

[10] Lyashko I. I., Velikoivanenko I. I., Lavrik V. I., Mistetskii G. E., Metod mazhorantnykh oblastei v teorii filtratsii, Naukova dumka, Kiev, 1974 | MR

[11] Polozhii G. N., Teoriya i primenenie $p$-analiticheskikh i $(p,g)$-analiticheskikh funktsii, Naukova dumka, Kiev, 1973