Bethe--Dunkl manifold associated with Dunkle--Darboux operators
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 123-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we prove that two algebraic varieties associated with Dunkl–Darboux operators coincide.
Keywords: Bethe–Dunkl manifold, root system, Dunkle–Darboux operator.
@article{INTO_2021_191_a11,
     author = {K. O. Politov},
     title = {Bethe--Dunkl manifold associated with {Dunkle--Darboux} operators},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {123--128},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/}
}
TY  - JOUR
AU  - K. O. Politov
TI  - Bethe--Dunkl manifold associated with Dunkle--Darboux operators
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 123
EP  - 128
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/
LA  - ru
ID  - INTO_2021_191_a11
ER  - 
%0 Journal Article
%A K. O. Politov
%T Bethe--Dunkl manifold associated with Dunkle--Darboux operators
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 123-128
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/
%G ru
%F INTO_2021_191_a11
K. O. Politov. Bethe--Dunkl manifold associated with Dunkle--Darboux operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 123-128. http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/

[1] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, Usp. mat. nauk., 49:6 (300) (1994), 5–77 | MR | Zbl

[2] Mescheryakov V. V., Differentsialno-raznostnye operatory. Svoistva, prilozheniya, obobscheniya, LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2010

[3] Khekalo S. P., “Differentsialno-raznostnye operatory Dunkla—Darbu”, Izv. RAN. Ser. mat., 81:1 (2017), 161–182 | MR | Zbl

[4] Burchnall J. L., Chaundy T. W., “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc. (2)., 30:1 (1929-30), 401–414 | DOI | MR

[5] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl

[6] Golubeva V. A., Leksin V. P., “Heisenberg–Weyl operator algebras associated to the models of Calogero–Sutherland type and isomorphism of rational and trigonometric models”, J. Math. Sci., 98:3 (2000), 291–318 | DOI | MR | Zbl