Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_191_a11, author = {K. O. Politov}, title = {Bethe--Dunkl manifold associated with {Dunkle--Darboux} operators}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {123--128}, publisher = {mathdoc}, volume = {191}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/} }
TY - JOUR AU - K. O. Politov TI - Bethe--Dunkl manifold associated with Dunkle--Darboux operators JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 123 EP - 128 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/ LA - ru ID - INTO_2021_191_a11 ER -
%0 Journal Article %A K. O. Politov %T Bethe--Dunkl manifold associated with Dunkle--Darboux operators %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 123-128 %V 191 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/ %G ru %F INTO_2021_191_a11
K. O. Politov. Bethe--Dunkl manifold associated with Dunkle--Darboux operators. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 123-128. http://geodesic.mathdoc.fr/item/INTO_2021_191_a11/
[1] Berest Yu. Yu., Veselov A. P., “Printsip Gyuigensa i integriruemost”, Usp. mat. nauk., 49:6 (300) (1994), 5–77 | MR | Zbl
[2] Mescheryakov V. V., Differentsialno-raznostnye operatory. Svoistva, prilozheniya, obobscheniya, LAP LAMBERT Academic Publishing, Saarbrücken, Germany, 2010
[3] Khekalo S. P., “Differentsialno-raznostnye operatory Dunkla—Darbu”, Izv. RAN. Ser. mat., 81:1 (2017), 161–182 | MR | Zbl
[4] Burchnall J. L., Chaundy T. W., “A set of differential equations which can be solved by polynomials”, Proc. London Math. Soc. (2)., 30:1 (1929-30), 401–414 | DOI | MR
[5] Dunkl C. F., “Differential-difference operators associated to reflection groups”, Trans. Amer. Math. Soc., 311:1 (1989), 167–183 | DOI | MR | Zbl
[6] Golubeva V. A., Leksin V. P., “Heisenberg–Weyl operator algebras associated to the models of Calogero–Sutherland type and isomorphism of rational and trigonometric models”, J. Math. Sci., 98:3 (2000), 291–318 | DOI | MR | Zbl