Unsteady boundary layer of a modified viscous fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a system of equations for a nonstationary, symmetric boundary layer of a nonlinearly viscous, incompressible fluid is studied. By using the Crocco transformation, we reduce the boundary-layer system to a single quasilinear degenerate parabolic equation. The unique solvability of the main boundary-value problem is proved.
Keywords: boundary layer, unsteady flow, modified Ladyzhenskaya fluid.
Mots-clés : Crocco variables
@article{INTO_2021_191_a1,
     author = {R. R. Bulatova},
     title = {Unsteady boundary layer of a modified viscous fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--15},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/}
}
TY  - JOUR
AU  - R. R. Bulatova
TI  - Unsteady boundary layer of a modified viscous fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 10
EP  - 15
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/
LA  - ru
ID  - INTO_2021_191_a1
ER  - 
%0 Journal Article
%A R. R. Bulatova
%T Unsteady boundary layer of a modified viscous fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 10-15
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/
%G ru
%F INTO_2021_191_a1
R. R. Bulatova. Unsteady boundary layer of a modified viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15. http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/

[1] Bulatova R. R., Samokhin V. N., Chechkin G. A., “Uravneniya magnitogidrodinamicheskogo pogranichnogo sloya dlya modifitsirovannoi neszhimaemoi vyazkoi sredy. Otryv pogranichnogo sloya”, Probl. mat. anal., 92 (2018), 83–100 | Zbl

[2] Oleinik O. A., Samokhin V. N., Matematicheskie metody v teorii pogranichnogo sloya, Nauka, M., 1997 | MR

[3] Samokhin V. N., Fadeeva G. M., Chechkin G. A., “Uravneniya pogranichnogo sloya dlya modifitsirovannoi sistemy Nave—Stoksa”, Tr. semin. im. I. G. Petrovskogo., 28 (2011), 329–361 | Zbl

[4] Samokhin V. N., Chechkin G. A., “Uravneniya pogranichnogo sloya obobschenno nyutonovskoi sredy v okrestnosti kriticheskoi tochki”, Tr. semin. im. I. G. Petrovskogo., 31 (2016), 158–176

[5] Bulatova R. R., Chechkin G. A., Chechkina T. P. and Samokhin V. N., “On the influence of a magnetic field on the separation of the boundary layer of a non-Newtonian MHD medium”, C. R. Mecanique., 346:9 (2018), 807–814 | DOI