Unsteady boundary layer of a modified viscous fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, a system of equations for a nonstationary, symmetric boundary layer of a nonlinearly viscous, incompressible fluid is studied. By using the Crocco transformation, we reduce the boundary-layer system to a single quasilinear degenerate parabolic equation. The unique solvability of the main boundary-value problem is proved.
Keywords:
boundary layer, unsteady flow, modified Ladyzhenskaya fluid.
Mots-clés : Crocco variables
Mots-clés : Crocco variables
@article{INTO_2021_191_a1,
author = {R. R. Bulatova},
title = {Unsteady boundary layer of a modified viscous fluid},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {10--15},
publisher = {mathdoc},
volume = {191},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/}
}
TY - JOUR AU - R. R. Bulatova TI - Unsteady boundary layer of a modified viscous fluid JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 10 EP - 15 VL - 191 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/ LA - ru ID - INTO_2021_191_a1 ER -
R. R. Bulatova. Unsteady boundary layer of a modified viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15. http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/