Unsteady boundary layer of a modified viscous fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a system of equations for a nonstationary, symmetric boundary layer of a nonlinearly viscous, incompressible fluid is studied. By using the Crocco transformation, we reduce the boundary-layer system to a single quasilinear degenerate parabolic equation. The unique solvability of the main boundary-value problem is proved.
Keywords: boundary layer, unsteady flow, modified Ladyzhenskaya fluid.
Mots-clés : Crocco variables
@article{INTO_2021_191_a1,
     author = {R. R. Bulatova},
     title = {Unsteady boundary layer of a modified viscous fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {10--15},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/}
}
TY  - JOUR
AU  - R. R. Bulatova
TI  - Unsteady boundary layer of a modified viscous fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 10
EP  - 15
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/
LA  - ru
ID  - INTO_2021_191_a1
ER  - 
%0 Journal Article
%A R. R. Bulatova
%T Unsteady boundary layer of a modified viscous fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 10-15
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/
%G ru
%F INTO_2021_191_a1
R. R. Bulatova. Unsteady boundary layer of a modified viscous fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 10-15. http://geodesic.mathdoc.fr/item/INTO_2021_191_a1/