Bilateral method of calculating magnetostatic fields
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bilateral methods of mathematical modeling of magnetic fields in electrical systems containing ferromagnets and permanent magnets are considered. The methods are based on the Lagrange multiplier method applied to the equations of the electromagnetic field in terms of the scalar potential.
Keywords: magnetic field, bilateral method, ferromagnetic material, magnetic potential
Mots-clés : coefficient error, permanent magnet, Lagrange multiplier method.
@article{INTO_2021_191_a0,
     author = {T. Arutyunyan},
     title = {Bilateral method of calculating magnetostatic fields},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {191},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_191_a0/}
}
TY  - JOUR
AU  - T. Arutyunyan
TI  - Bilateral method of calculating magnetostatic fields
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 9
VL  - 191
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_191_a0/
LA  - ru
ID  - INTO_2021_191_a0
ER  - 
%0 Journal Article
%A T. Arutyunyan
%T Bilateral method of calculating magnetostatic fields
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-9
%V 191
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_191_a0/
%G ru
%F INTO_2021_191_a0
T. Arutyunyan. Bilateral method of calculating magnetostatic fields. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 2, Tome 191 (2021), pp. 3-9. http://geodesic.mathdoc.fr/item/INTO_2021_191_a0/

[1] Arutyunyan R. V., Nekrasov S. A., Seredina P. B., “Identifikatsiya namagnichennosti postoyannykh magnitov na osnove metoda skalyarnogo magnitnogo potentsiala”, Izv. vuzov. Elektromekh., 61:6 (2018), 19–25

[2] Arutyunyan R. V., Nekrasov S. A., Seredina P. B., “Metody identifikatsii namagnichennosti postoyannykh magnitov na osnove integralnykh uravnenii. Issledovanie i primery primeneniya”, Izv. vuzov. Elektromekh., 1 (2019)

[3] Blokh Yu. I., Teoreticheskie osnovy kompleksnoi magnitorazvedki, MGGA, M., 2012

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1988

[5] Korn G., Korn T., Spravochnik po matematike, Nauka, M., 1978

[6] Rogalev A. N., “Granitsy mnozhestv reshenii sistem obyknovennykh differentsialnykh uravnenii s intervalnymi nachalnymi dannymi”, Vychisl. tekhnol., 9:1 (2004), 86–94 | Zbl

[7] Spravochnik po avtomaticheskomu upravleniyu, ed. Krasovskii A. A., Nauka, M., 1987

[8] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980