On the invariance of trajectories under perturbations in linear dynamic control systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 93-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear, nonstationary, completely controllable dynamical system with multipoint conditions on the state, we consider a problem on the independence of the state (trajectory) of the system of external perturbations and possible changes in the parameters of the system (internal perturbations). The problem is to construct a control for the perturbed system under which the state of the perturbed system is identical to the state of the unperturbed system. We compare controls for the unperturbed and perturbed systems at the same states of the systems.
Keywords: linear dynamical system, control, invariance, blocking, cascade decomposition method.
Mots-clés : perturbation
@article{INTO_2021_190_a8,
     author = {S. P. Zubova and E. V. Raetskaya and L. Chung},
     title = {On the invariance of trajectories under perturbations in linear dynamic control systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {93--106},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/}
}
TY  - JOUR
AU  - S. P. Zubova
AU  - E. V. Raetskaya
AU  - L. Chung
TI  - On the invariance of trajectories under perturbations in linear dynamic control systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 93
EP  - 106
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/
LA  - ru
ID  - INTO_2021_190_a8
ER  - 
%0 Journal Article
%A S. P. Zubova
%A E. V. Raetskaya
%A L. Chung
%T On the invariance of trajectories under perturbations in linear dynamic control systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 93-106
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/
%G ru
%F INTO_2021_190_a8
S. P. Zubova; E. V. Raetskaya; L. Chung. On the invariance of trajectories under perturbations in linear dynamic control systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 93-106. http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/

[1] Dorf R., Bishop R., Sovremennye sistemy upravleniya, Laboratoriya bazovykh znanii, M., 2002

[2] Zubova S. P., “Reshenie obratnykh zadach dlya lineinykh dinamicheskikh sistem kaskadnym metodom”, Dokl. RAN., 447:6 (2012), 599–602 | Zbl

[3] Zubova S. P., Metod kaskadnoi dekompozitsii resheniya zadach dlya psevdoregulyarnykh uravnenii, Diss. na soisk. uch. step. doktora fiz.-mat. nauk, Voronezh, 2013

[4] Zubova S. P., Raetskaya E. V., “Algoritm resheniya lineinykh mnogotochechnykh zadach upravleniya metodom kaskadnoi dekompozitsii”, Avtomat. telemekh., 7 (2017), 22–38 | Zbl

[5] Zubova S. P., Raetskaya E. V., Le Khai Chung, “O polinomialnykh resheniyakh lineinoi statsionarnoi sistemy upravleniya”, Avtomat. telemekh., 11 (2008), 41–47

[6] Kagan V. F., Osnovaniya teorii opredelitelei, Odessa, 1922

[7] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[8] Uonem M., Lineinye mnogomernye sistemy upravleniya: geometricheskii podkhod, Nauka, M., 1980