On the invariance of trajectories under perturbations in linear dynamic control systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 93-106
Voir la notice de l'article provenant de la source Math-Net.Ru
For a linear, nonstationary, completely controllable dynamical system with multipoint conditions on the state, we consider a problem on the independence of the state (trajectory) of the system of external perturbations and possible changes in the parameters of the system (internal perturbations). The problem is to construct a control for the perturbed system under which the state of the perturbed system is identical to the state of the unperturbed system. We compare controls for the unperturbed and perturbed systems at the same states of the systems.
Keywords:
linear dynamical system, control, invariance, blocking, cascade decomposition method.
Mots-clés : perturbation
Mots-clés : perturbation
@article{INTO_2021_190_a8,
author = {S. P. Zubova and E. V. Raetskaya and L. Chung},
title = {On the invariance of trajectories under perturbations in linear dynamic control systems},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {93--106},
publisher = {mathdoc},
volume = {190},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/}
}
TY - JOUR AU - S. P. Zubova AU - E. V. Raetskaya AU - L. Chung TI - On the invariance of trajectories under perturbations in linear dynamic control systems JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 93 EP - 106 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/ LA - ru ID - INTO_2021_190_a8 ER -
%0 Journal Article %A S. P. Zubova %A E. V. Raetskaya %A L. Chung %T On the invariance of trajectories under perturbations in linear dynamic control systems %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 93-106 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/ %G ru %F INTO_2021_190_a8
S. P. Zubova; E. V. Raetskaya; L. Chung. On the invariance of trajectories under perturbations in linear dynamic control systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 93-106. http://geodesic.mathdoc.fr/item/INTO_2021_190_a8/