Local asymptotic analysis of model optoelectronic systems with delay
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 57-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine several models of optoelectronic systems with delayed feedback that are generalizations of the well-known Lang–Kobayashi model of semiconductor lasers. We propose new reduced equations that describe the dynamics of the original systems in a neighborhood of limit families of periodic solutions for asymptotically large values of a parameter of the problem. Using numerical and analytical methods, we obtain some applied conclusions.
Keywords: mathematical model, differential equation with delay, semiconductor laser, small parameter, asymptotics, stability
Mots-clés : bifurcation.
@article{INTO_2021_190_a5,
     author = {D. V. Glazkov},
     title = {Local asymptotic analysis of model optoelectronic systems with delay},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {57--80},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a5/}
}
TY  - JOUR
AU  - D. V. Glazkov
TI  - Local asymptotic analysis of model optoelectronic systems with delay
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 57
EP  - 80
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a5/
LA  - ru
ID  - INTO_2021_190_a5
ER  - 
%0 Journal Article
%A D. V. Glazkov
%T Local asymptotic analysis of model optoelectronic systems with delay
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 57-80
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a5/
%G ru
%F INTO_2021_190_a5
D. V. Glazkov. Local asymptotic analysis of model optoelectronic systems with delay. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 57-80. http://geodesic.mathdoc.fr/item/INTO_2021_190_a5/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973

[2] Glazkov D. V., “Osobennosti dinamiki modeli Langa—Kobayashi v odnom kriticheskom sluchae”, Model. anal. inform. sist., 15:2 (2008), 36–45

[3] Glazkov D. V., “Kachestvennyi analiz singulyarno vozmuschennykh modelei odnogo klassa optiko-elektronnykh sistem”, Izv. vuzov. Prikl. nelin. dinam., 16:4 (2008), 167–181 | Zbl

[4] Glazkov D. V., “Prosteishie kvazinormalnye formy modelei mnogomodovykh lazerov s zapazdyvaniem”, Vestn. YarGU. Ser. estestv. tekhn. nauki., 2 (2013), 49–56

[5] Kaschenko S. A., “Bifurkatsii tsikla v singulyarno vozmuschennykh nelineinykh avtonomnykh sistemakh”, Izv. RAEN. Ser. mat. mat. model. inform. upravl., 2:4 (1998), 5–53

[6] Kaschenko S. A., “Lokalnaya dinamika nelineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differ. uravn., 35:10 (1999), 1343–1355 | MR | Zbl

[7] Kaschenko S. A., “Bifurkatsii v okrestnosti tsikla pri malykh vozmuscheniyakh s bolshim zapazdyvaniem”, Zh. vychisl. mat. mat. fiz., 4 (2000), 659–668

[8] Koryukin I. V., “Dinamika mnogomodovogo poluprovodnikovogo lazera s opticheskoi obratnoi svyazyu”, Fiz. tekhn. poluprovodn., 43:3 (2009), 405–411

[9] Kotelyanskii D. M., “O nekotorykh svoistvakh matrits s polozhitelnymi elementami”, Mat. sb., 31:3 (1952), 495–506 | MR

[10] Perov A. I., “Novye priznaki ustoichivosti lineinykh sistem differentsialnykh uravnenii s postoyannymi koeffitsientami”, Izv. vuzov. Mat., 9 (2014), 49–58 | Zbl

[11] Pertsev N. V., Pichugin B. Yu., Pichugina A. N., “Primenenie M-matrits dlya issledovaniya matematicheskikh modelei zhivykh sistem”, Mat. biol. bioinform., 13:1 (2018), 208–-237

[12] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971

[13] Khanin Ya. I., Osnovy dinamiki lazerov, Nauka, M., 1999

[14] Fischer I., Hess O., Elsässer W. and Göbel E., “High-dimensional chaotic dynamics of an external cavity semiconductor laser”, Phys. Rev. Lett., 73:16 (1994), 2188–2191 | DOI

[15] Grassberger P., Procaccia I., “Estimation of the Kolmogorov entropy from a chaotic signal”, Phys. Rev. A., 28:4 (1983), 2591–2593 | DOI

[16] Grassberger P., Procaccia I., “Measuring the strangeness of strange attractors”, Phys. D., 9:1–2 (1983), 189–208 | DOI | MR | Zbl

[17] Green K., Krauskopf B., “Mode structure of semiconductor laser subject to filtered optical feedback”, Opt. Commun., 258 (2006), 243–255 | DOI

[18] Grigorieva E. V., Haken H., Kaschenko S. A., “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165 (1999), 279–292 | DOI

[19] Grigorieva E. V., “Quasiperiodicity in Lang–Kobayashi model of lasers with delayed optical feedback”, Nonlin. Phenom. Compl. Systems., 4:4 (2001), 333–340

[20] Heil T., Fischer I., Elsässer W., Krauskopf B., Green K., Gavrielides A., “Delay dynamics of semiconductor lasers with short external cavities: Bifurcation scenarios and mechanisms”, Phys. Rev. E., 67 (2003), 066214 | DOI | MR

[21] Kaschenko S. A., “Normalization in the systems with small diffusion”, Int. J. Bifurcat. Chaos., 6:7 (1996), 1093–1109 | DOI | MR | Zbl

[22] Kaschenko S. A., “Bifurcational features in systems of nonlinear parabolic equations with weak diffusion”, Int. J. Bifurcat. Chaos., 15:11 (2005), 3595–3606 | DOI | MR | Zbl

[23] Lang R., Kobayashi K., “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quant. Electron., 16:1 (1980), 347–355 | DOI

[24] Levine A. M., Tartwijk G. H. M., Lenstra D. and Erneux T., “Diode lasers with optical feedback: Stability of the maximum gain mode”, Phys. Rev. A., 52:5 (1995), 3436–3439 | DOI

[25] Lythe G., Erneux T., Gavrielides A. and Kovanis V., “Low pump limit of the bifurcation to periodic intensities in a semiconductor laser subject to external optical feedback”, Phys. Rev. A., 55:6 (1997), 4443–4448 | DOI

[26] Mendez J. M., Laje R., Giudici M., Aliaga J. and Mindlin G. B., “Dynamics of periodically forced semiconductor laser with optical feedback”, Phys. Rev. E., 63 (2001), 066218 | DOI

[27] Ohtsubo J., Semiconductor Lasers. Stability, Instability and Chaos, Springer, 2017

[28] Rottschafer V., Krauskopf B., A three-parameter study of external cavity modes in semiconductor lasers with optical feedback, Proc. IFAC-TDS, 2004

[29] Sacher J., Elsässer W., Göbel E. O., “Intermittency in the coherence collapse of a semiconductor laser with external feedback”, Phys. Rev. Lett., 63:20 (1989), 2224–2227 | DOI

[30] Sano T., “Antimode dynamics and chaotic itinerancy in the coherence collapse of semiconductor lasers with optical feedback”, Phys. Rev. A., 50:3 (1994), 2719–2726 | DOI

[31] Sciamanna M., Megret P., and Blondel M., “Hopf bifurcation cascade in small-$\alpha$ laser diodes subject to optical feedback”, Phys. Rev. E., 69 (2004), 046209 | DOI

[32] Soriano M. C., Garcia-Ojalvo J., Mirasso C. R., and Fischer I., “Complex photonics: Dynamics and applications of delay-coupled semiconductors lasers”, Rev. Mod. Phys., 85:1 (2013), 421–470 | DOI

[33] Tabaka A., Panajotov K., Veretennicoff I., Sciamanna M., “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback”, Phys. Rev. E., 70 (2004), 036211 | DOI

[34] Van Tartwijk G. H. M. and Agrawal G. P., “Laser instabilities: a modern perspective”, Progr. Quant. Electr., 22 (1998), 43–122 | DOI

[35] Vicktorov E. A., Mandel P., “Low frequency fluctuations in a multimode semiconductor laser with optical feedback”, Phys. Rev. Lett., 85:15 (2000), 3157–3160 | DOI

[36] Wolf A., Swift J. B., Swinney H. L., Vastano J. A., “Determining Lyapunov exponents from a time series”, Phys. D., 16:3 (1985), 285–317 | DOI | MR | Zbl

[37] Ye J., Li H., McInerny J. M., “Period-doubling route to chaos in a semiconductor laser with weak optical feedback”, Phys. Rev. A., 47:3 (1993), 2249–2252 | DOI