On gauge transformations of electromagnetic potentials in the quaternion form
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 50-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize the Cauchy–Riemann equations of the theory of functions of a complex variable to quaternion functions of eight variables and indicate that some properties of functions of a complex variable remain valid in this case. We propose an interpretation of the system obtained as the system of electrodynamic Maxwell equations and introduce electromagnetic potentials in the quaternionic form. From these general positions, we also introduce gauge transformations and obtain their specific forms.
Mots-clés : quaternion
Keywords: gauge transformation, Cauchy–Riemann system, Maxwell equations.
@article{INTO_2021_190_a4,
     author = {Yu. A. Gladyshev},
     title = {On gauge transformations of electromagnetic potentials in the quaternion form},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--56},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a4/}
}
TY  - JOUR
AU  - Yu. A. Gladyshev
TI  - On gauge transformations of electromagnetic potentials in the quaternion form
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 50
EP  - 56
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a4/
LA  - ru
ID  - INTO_2021_190_a4
ER  - 
%0 Journal Article
%A Yu. A. Gladyshev
%T On gauge transformations of electromagnetic potentials in the quaternion form
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 50-56
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a4/
%G ru
%F INTO_2021_190_a4
Yu. A. Gladyshev. On gauge transformations of electromagnetic potentials in the quaternion form. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 50-56. http://geodesic.mathdoc.fr/item/INTO_2021_190_a4/

[1] Branets V. N., Shmyglevskii I. P., Primenenie kvaternionov v zadachakh orientatsii tverdogo tela, Nauka, M., 1973 | MR

[2] Brinkman G., Primenenie spinornykh invariantov v atomnoi fizike, IL, M., 1959

[3] Gladyshev Yu. A., “Ob odnom obobschenii uslovii Koshi—Rimana teorii funktsii kompleksnogo peremennogo v oblast kvaternionnykh funktsii”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Nauchnaya kniga, Voronezh, 2018, 94–96

[4] Gladyshev Yu. A., Formalizm Beltrami—Bersa i ego prilozheniya v matematicheskoi fizike, KGU im. K. E. Tsioolkovskogo, Kaluga, 1997

[5] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 2. Teoriya polya, Fizmatlit, M., 2003 | MR

[6] Markushevich A. I., Teoriya analiticheskikh funktsii, GITTL, M.-L., 1950 | MR

[7] Beltrami E., “Sulle funzioni potenziali di sistemi simmetrici intorno ad un asse”, Oper. Mat., 1911, 115–128

[8] Beltrami E., “Sulle teoria delle funzioni potenziali simmetriche”, Oper. Mat., 1911, 349–377

[9] Bers L., Gelbart A., “On a class of functions defined by partial differential equations”, Trans. Am. Math. Soc., 56 (1944), 67–93 | DOI | MR | Zbl

[10] Fueter R., “Zur Theorie der regulären Funktionen einer Quaternionenvariablen”, Monats. Math., 43 (1936), 69–74 | DOI | MR

[11] Moisil G., “Sur les quaternions monogenes”, Bull. Sci. Math. Paris., 55 (1931), 169–194

[12] Moisil G., Teodorescu N., “Fonctions holomorphes dans l'espace”, Mathematica (Cluj)., 5 (1931), 142–159