Normal oscillations of a pendulum with a cavity partially filled with an ideal incompressible fluid
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 34-49

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear initial-boundary-value problem generated by the problem of small motions of a spatial pendulum with a cavity partially filled with a homogeneous incompressible fluid, in the case where the moment of friction forces in the spherical hinge is proportional to the angular velocity. We propose an operator interpretation of the problem and prove a theorem on the strong solvability of the Cauchy problem on a finite time interval. For the corresponding spectral problem, the discreteness of the spectrum and its localization in a strip are proved, power asymptotics of eigenvalues are found, and the summability of the system of eigenvectors is established by the Abel–Lidsky method.
Keywords: initial-boundary-value problem, Hilbert space, self-adjoint linear operator, discrete spectrum, Abel–Lidsky basis property.
@article{INTO_2021_190_a3,
     author = {V. I. Voytitsky and N. D. Kopachevskii},
     title = {Normal oscillations of a pendulum with a cavity partially filled with an ideal incompressible fluid},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {34--49},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a3/}
}
TY  - JOUR
AU  - V. I. Voytitsky
AU  - N. D. Kopachevskii
TI  - Normal oscillations of a pendulum with a cavity partially filled with an ideal incompressible fluid
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 34
EP  - 49
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a3/
LA  - ru
ID  - INTO_2021_190_a3
ER  - 
%0 Journal Article
%A V. I. Voytitsky
%A N. D. Kopachevskii
%T Normal oscillations of a pendulum with a cavity partially filled with an ideal incompressible fluid
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 34-49
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a3/
%G ru
%F INTO_2021_190_a3
V. I. Voytitsky; N. D. Kopachevskii. Normal oscillations of a pendulum with a cavity partially filled with an ideal incompressible fluid. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 34-49. http://geodesic.mathdoc.fr/item/INTO_2021_190_a3/