On some initial-boundary-value problems in aerohydroelasticity
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 19-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this problem, we consider problems of the dynamics and stability of deformable structural elements interacting with a fluid or gas flow. Mathematical models considered are initial-boundary-value problems for coupled systems of partial differential equations for hydrodynamic functions and deformation functions of elastic elements. To study the dynamics and stability of deformable elements interacting with an ideal medium, we use various methods of the theory of functions of complex variables, the Fourier method, the Bubnov–Galerkin method, and the method of Lyapunov functionals.
Keywords: aerohydroelasticity, elastic plate, deformation, dynamics, stability, partial differential equations, Bubnov–Galerkin method, method of Lyapunov functionals.
@article{INTO_2021_190_a2,
     author = {P. A. Vel'misov and Yu. V. Pokladova and U. J. Mizher},
     title = {On some initial-boundary-value problems in aerohydroelasticity},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--33},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a2/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - Yu. V. Pokladova
AU  - U. J. Mizher
TI  - On some initial-boundary-value problems in aerohydroelasticity
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 19
EP  - 33
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a2/
LA  - ru
ID  - INTO_2021_190_a2
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A Yu. V. Pokladova
%A U. J. Mizher
%T On some initial-boundary-value problems in aerohydroelasticity
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 19-33
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a2/
%G ru
%F INTO_2021_190_a2
P. A. Vel'misov; Yu. V. Pokladova; U. J. Mizher. On some initial-boundary-value problems in aerohydroelasticity. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 19-33. http://geodesic.mathdoc.fr/item/INTO_2021_190_a2/

[1] Ageev R. V., Mogilevich L. I., Popov V. S., “Kolebaniya stenok schelevogo kanala s vyazkoi zhidkostyu, obrazovannogo trekhsloinym i tverdym diskami”, Probl. mashinostr. nadezhn. mashin., 1 (2014), 3–11

[2] Ageev R. V., Mogilevich L. I., Popov V. S., Popova A. A., “Dvizhenie vyazkoi zhidkosti v ploskom kanale, obrazovannom vibriruyuschim shtampom i sharnirno opertoi plastinoi”, Tr. MAI., 78 (2014), 1–13

[3] Ankilov A. V., Velmisov P. A., Funktsionaly Lyapunova v nekotorykh zadachakh dinamicheskoi ustoichivosti aerouprugikh konstruktsii, UlGTU, Ulyanovsk, 2015

[4] Ankilov A. V., Velmisov P. A., Gorbokonenko V. D., Pokladova Yu. V., Matematicheskoe modelirovanie mekhanicheskoi sistemy «truboprovod—datchik davleniya», UlGTU, Ulyanovsk, 2008

[5] Bolotin V. V., Radin V. P., Chirkov V. P., Schugorev A. V., “Ustoichivost uchastka truboprovoda s uprugoi oporoi”, Izv. RAN. Mekh. tv. tela., 1 (2009), 174–184

[6] Bochkarev S. A., Matveenko V. P., “Reshenie zadachi o panelnom flattere obolochechnykh konstruktsii metodom konechnykh elementov”, Mat. model., 2 (2002), 55–71

[7] Velmisov P. A., Gorbokonenko V. D., Reshetnikov Yu. A., “Matematicheskoe modelirovanie mekhanicheskoi sistemy «truboprovod—datchik davleniya»”, Datchiki i sistemy., 6 (2003), 12–15

[8] Velmisov P. A., Manzhosov V. K., Matematicheskoe modelirovanie v zadachakh dinamiki vibroudarnykh i aerouprugikh sistem, UlGTU, Ulyanovsk, 2014

[9] Velmisov P. A., Pokladova Yu. V., Issledovanie dinamiki deformiruemykh elementov nekotorykh aerogidrouprugikh sistem, UlGTU, Ulyanovsk, 2018

[10] Velmisov P. A., Pokladova Yu. V., “Matematicheskoe modelirovanie dinamiki zaschitnoi poverkhnosti rezervuara”, Vestn. Ulyanovsk. gos. tekhn. un-ta., 2 (2018), 27–35

[11] Velmisov P. A., Pokladova Yu. V., “Matematicheskoe modelirovanie dinamiki uprugikh elementov, vzaimodeistvuyuschikh s potokom gaza”, Vestn. Ulyanovsk. gos. tekhn. un-ta., 3 (2018), 22–30

[12] Velmisov P. A., Pokladova Yu. V., Serebryannikova E. S., “Matematicheskoe modelirovanie sistemy «truboprovod — datchik davleniya»”, Zh. Srednevolzh. mat. o-va., 12:4 (2010), 85–93

[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[14] Zefirov S. V., Kochetkov A. V., Ovchinnikov V. F., Savikhin A. O., Smirnov L. V., Yaskelyain A. V., “Chislennoe modelirovanie dinamicheskogo deformirovaniya prostranstvennogo truboprovoda s zhidkostyu pri lokalnom udarnom nagruzhenii”, Probl. prochn. plastichn., 75:2 (2013), 152–159

[15] Ilgamov M. A., Khakimov A. G., “Izgib dlinnogo truboprovoda, nakhodyaschegosya v ochen vyazkoi zhidkosti”, Stroit. mekh. inzh. konstr. sooruzh., 1 (2009), 7–12

[16] Kazaryan A. A., Groshev G. P., “Universalnyi datchik davleniya”, Izmerit. tekhn., 3 (2008), 26–30

[17] Kulikov A. N., “Bifurkatsiya avtokolebanii pri malom koeffitsiente dempfirovaniya v sverkhzvukovom potoke gaza”, Prikl. mat. mekh., 73:2 (2009), 271–281 | Zbl

[18] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | MR

[19] Martynenko V. T., “Issledovanie prichin, vliyayuschikh na pogreshnost preobrazovaniya datchikov raznosti davlenii «Sapfir-22»”, Pribory i sistemy. Upravlenie, kontrol, diagnostika., 6 (2005), 31–33

[20] Mikhailov P. G., Mokrov E. A., Mitrokhin S. V., Sergeev D. A., “Osobennosti metrologicheskogo obespecheniya sovremennykh datchikov pulsatsii davlenii”, Izv. YuFU. Tekhn. nauki., 130:5 (2012), 174–179

[21] Mogilevich L. I., Popov V. S., Popova A. A., Khristoforova A. V., “Matematicheskoe modelirovanie dinamiki vzaimodeistviya silnovyazkoi zhidkosti so stenkami kanala, ustanovlennogo na uprugom osnovanii”, Dinam. sist. mekh. mashin., 3:1 (2016), 350–354

[22] Pokladova Yu. V., Reshetnikov Yu. A., “Matematicheskoe modelirovanie dinamiki uprugogo elementa datchika davleniya v truboprovode konechnoi dliny”, Prikl. mat. mekh. (Ulyanovsk)., 6 (2004), 114–120

[23] Stuchebnikov V. M., “Datchiki davleniya MIDA dlya sistem kommercheskogo ucheta energonositelei”, Datchiki i sistemy., 4 (2009), 38–40

[24] Etkin L. G., Vibrochastotnye datchiki. Teoriya i praktika, Izd-vo MGTU im. N. E. Baumana, M., 2004

[25] Abdelbaki A. R., Paidoussis M. P., Misra A. K., “A nonlinear model for a free-clamped cylinder subjected to confined axial flow”, J. Fluids Struct., 80 (2018), 390–404 | DOI

[26] Abdelbaki A. R., Paidoussis M. P., Misra A. K., “A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows”, J. Sound Vibration., 449 (2019), 349–367 | DOI

[27] Faal R. T., Derakhshan D., “Flow-induced vibration of pipeline on elastic support”, Proc. Eng., 14 (2011), 2986–2993 | DOI

[28] Gatica G. N., Heuer N., Meddahi S., “Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D”, Numer. Methods Partial Differ. Equations., 30:4 (2014), 1211–1233 | DOI | MR | Zbl

[29] Kontzialis K., Moditis K., Paidoussis M. P., “Transient simulations of the fluid-structure interaction response of a partially confined pipe under axial flows in opposite directions”, J. Press. Vessel Techn., 139:3 (2017), 1–8 | DOI

[30] Moditis K., Paidoussis M., Ratigan J., “Dynamics of a partially confined, discharging, cantilever pipe with reverse external flow”, J. Fluids Struct., 63 (2016), 120–139 | DOI

[31] Mogilevich L. I., Popova A. A., Popov V. S., “On the dynamic interaction of an elastic cylindrical shell with a fluid laminar stream inside in application to pipeline transportation”, Sci. Technol. Transport., 2 (2007), 69–72

[32] Velmisov P. A., Ankilov A. V., “Dynamic stability of plate interacting with viscous fluid”, Cybern. Phys., 6:5 (2017), 262–270

[33] Velmisov P. A., Ankilov A. V., “Stability of solutions of initial boundary-value problems of aerohydroelasticity”, J. Math. Sci., 233:6 (2018), 958–975 | DOI | MR

[34] Velmisov P. A., Ankilov A. V., Pokladova Yu. V., “Stability of solutions of initial-boundary value problems in aerohydroelasticity”, AIP Conf. Proc., 2048:1 (2018), 040011 | DOI | MR