Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_190_a11, author = {V. L. Khatskevich}, title = {On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {122--129}, publisher = {mathdoc}, volume = {190}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/} }
TY - JOUR AU - V. L. Khatskevich TI - On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 122 EP - 129 VL - 190 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/ LA - ru ID - INTO_2021_190_a11 ER -
%0 Journal Article %A V. L. Khatskevich %T On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 122-129 %V 190 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/ %G ru %F INTO_2021_190_a11
V. L. Khatskevich. On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 122-129. http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/
[2] Dzhozef D., Ustoichivost dvizhenii zhidkosti, M., 1981
[3] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989
[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970
[5] Levenshtam V. B., “Asimptoticheskoe integrirovanie sistemy Nave—Stoksa s bystro ostsilliruyuschei massovoi siloi”, Differ. uravn., 37:5 (2001), 696–705 | MR | Zbl
[6] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978
[7] Lin Tszya-tszyao, Teoriya gidrodinamicheskoi ustoichivosti, M., 1958
[8] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972
[9] Simonenko I. B., Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1989
[10] Temam R., Uravneniya Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981
[11] Trubnikov Yu. A., Perov A. I., Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, 1986 | MR
[12] Khatskevich V. L., “O printsipe usredneniya v periodicheskoi po vremeni zadache dlya uravnenii Nave––Stoksa s bystro ostsilliruyuschei massovoi siloi”, Mat. zametki., 99:5 (2016), 764–777 | MR | Zbl
[13] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1984
[14] Yudovich V. I., “Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami”, Usp. mekh., 4:3 (2006), 26–129