On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 122-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we propose a condition that ensures the applicability of the first Lyapunov method to justifying stability of stationary and periodic fluid flows in a bounded region and the uniqueness of solutions of the corresponding problems.
Keywords: evolutionary Navier–Stokes equations, hydrodynamic stability, linearized problem, property of uniform dissipativity.
@article{INTO_2021_190_a11,
     author = {V. L. Khatskevich},
     title = {On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {122--129},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/}
}
TY  - JOUR
AU  - V. L. Khatskevich
TI  - On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 122
EP  - 129
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/
LA  - ru
ID  - INTO_2021_190_a11
ER  - 
%0 Journal Article
%A V. L. Khatskevich
%T On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 122-129
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/
%G ru
%F INTO_2021_190_a11
V. L. Khatskevich. On a condition that ensures hydrodynamic stability and uniqueness of stationary and periodic fluid flows. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 122-129. http://geodesic.mathdoc.fr/item/INTO_2021_190_a11/

[2] Dzhozef D., Ustoichivost dvizhenii zhidkosti, M., 1981

[3] Kopachevskii N. D., Krein S. G., Ngo Zui Kan, Operatornye metody v lineinoi gidrodinamike: Evolyutsionnye i spektralnye zadachi, Nauka, M., 1989

[4] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[5] Levenshtam V. B., “Asimptoticheskoe integrirovanie sistemy Nave—Stoksa s bystro ostsilliruyuschei massovoi siloi”, Differ. uravn., 37:5 (2001), 696–705 | MR | Zbl

[6] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978

[7] Lin Tszya-tszyao, Teoriya gidrodinamicheskoi ustoichivosti, M., 1958

[8] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[9] Simonenko I. B., Metod usredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1989

[10] Temam R., Uravneniya Nave—Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981

[11] Trubnikov Yu. A., Perov A. I., Differentsialnye uravneniya s monotonnymi nelineinostyami, Nauka i tekhnika, 1986 | MR

[12] Khatskevich V. L., “O printsipe usredneniya v periodicheskoi po vremeni zadache dlya uravnenii Nave––Stoksa s bystro ostsilliruyuschei massovoi siloi”, Mat. zametki., 99:5 (2016), 764–777 | MR | Zbl

[13] Yudovich V. I., Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo Rostov. un-ta, Rostov-na-Donu, 1984

[14] Yudovich V. I., “Vibrodinamika i vibrogeometriya mekhanicheskikh sistem so svyazyami”, Usp. mekh., 4:3 (2006), 26–129