Some approaches to linear multicriteria optimization problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe three approaches to problems of linear multicriteria optimization: the method of folding a vector criterion into a super criterion, the approximation principle an ideal solution, and the method based on the conflict measure between target criteria.
Mots-clés : Pareto optimal solution, gradient, coefficient of interaction, matrix of interaction
Keywords: multicriteria optimization, objective function, cooperation, conflict, majority principle, rule of making decisions.
@article{INTO_2021_190_a0,
     author = {E. M. Aristova},
     title = {Some approaches to linear multicriteria optimization problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {190},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2021_190_a0/}
}
TY  - JOUR
AU  - E. M. Aristova
TI  - Some approaches to linear multicriteria optimization problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2021
SP  - 3
EP  - 13
VL  - 190
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2021_190_a0/
LA  - ru
ID  - INTO_2021_190_a0
ER  - 
%0 Journal Article
%A E. M. Aristova
%T Some approaches to linear multicriteria optimization problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2021
%P 3-13
%V 190
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2021_190_a0/
%G ru
%F INTO_2021_190_a0
E. M. Aristova. Some approaches to linear multicriteria optimization problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the Voronezh spring mathematical school “Modern methods of the theory of boundary-value problems. Pontryagin readings – XXX”. Voronezh, May 3-9, 2019. Part 1, Tome 190 (2021), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2021_190_a0/

[1] Aristova E. M., Uchet vzaimodeistviya mezhdu tselevymi funktsiyami i ikh agregirovanie v zadachakh optimizatsii, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Voronezh. gos. un-t, Voronezh, 2012

[2] Borisov A. N., Obrabotka nechetkoi informatsii v sistemakh prinyatiya reshenii, Radio i svyaz, M., 1989

[3] Zaichenko Yu. P., Issledovanie operatsii. Nechetkaya optimizatsiya, Vyscha shkola, Kiev, 1991

[4] Melkumova E. M., “Odin iz podkhodov k resheniyu zadachi mnogokriterialnoi optimizatsii”, Vestn. VGU. Ser. Sist. anal. inform. tekhnol., 2 (2010), 3942

[5] Melkumova E. M., “Reshenie zadachi mnogokriterialnoi optimizatsii s pomoschyu ucheta koeffitsientov vazhnosti tselevykh funktsii”, Aktualnye problemy prikladnoi matematiki, informatiki i mekhaniki, Izd-vo VGU, Voronezh, 2011, 265269

[6] Nogin V. D., Prinyatie reshenii v mnogokriterialnoi srede, Fizmatlit, M., 2002

[7] Petrovskii A. B., Teoriya prinyatiya reshenii, Akademiya, M., 2009

[8] Roberts F. S., Diskretnye matematicheskie modeli s prilozheniyami k sotsialnym biologicheskim i ekologicheskim zadacham, Nauka, M., 1986

[9] Saati T., Prinyatie reshenii. Metod analiza ierarkhii, Radio i svyaz, M., 1993