Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2021_189_a0, author = {S. I. Piskarev and A. V. Ovchinnikov}, title = {Attractors, shadowing, and approximation of abstract semilinear differential equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--130}, publisher = {mathdoc}, volume = {189}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2021_189_a0/} }
TY - JOUR AU - S. I. Piskarev AU - A. V. Ovchinnikov TI - Attractors, shadowing, and approximation of abstract semilinear differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2021 SP - 3 EP - 130 VL - 189 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2021_189_a0/ LA - ru ID - INTO_2021_189_a0 ER -
%0 Journal Article %A S. I. Piskarev %A A. V. Ovchinnikov %T Attractors, shadowing, and approximation of abstract semilinear differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2021 %P 3-130 %V 189 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2021_189_a0/ %G ru %F INTO_2021_189_a0
S. I. Piskarev; A. V. Ovchinnikov. Attractors, shadowing, and approximation of abstract semilinear differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Functional Analysis, Tome 189 (2021), pp. 3-130. http://geodesic.mathdoc.fr/item/INTO_2021_189_a0/
[1] Antonyuk A. V., Kochubei A. N., Piskarev S. I., “O kompaktnosti i ravnomernoi nepreryvnosti razreshayuschego semeistva dlya uravneniya s drobnymi proizvodnymi”, Dopov. nats. akad. nauk Ukr., 2014, no. 6, 7–12 | Zbl
[2] Babenko Yu. I., Metod drobnogo differentsirovaniya v prikladnykh zadachakh teorii teplomassoobmena, NPO «Professional», 2009
[3] Baskakov A. G., “Lineinye differentsialnye operatory s neogranichennymi operatornymi koeffitsientami i polugruppy raznostnykh operatorov”, Mat. zametki., 59:6 (1996), 811–820 | Zbl
[4] Baskakov A. G., “Spektralnyi analiz lineinykh differentsialnykh operatorov i polugruppy raznostnykh operatorov, II”, Differ. uravn., 37:1 (2001), 3–11 | MR | Zbl
[5] Baskakov A. G., “O differentsialnykh i raznostnykh operatorakh Fredgolma”, Dokl. RAN., 416 (2007), 156–160 | Zbl
[6] Baskakov A. G., Issledovanie differentsialnykh uravnenii s neogranichennymi operatornymi koeffitsientami metodami teorii operatorov, Izdatelskii dom VGU, Voronezh, 2017
[7] Baskakov A. G., Kaluzhina N. S., Polyakov D.M., “Medlenno menyayuschiesya na beskonechnosti polugruppy operatorov”, Izv. vuzov. Mat., 2014, no. 7, 3–14 | Zbl
[8] Baskakov A. G., Pastukhov A. I., “Spektralnyi analiz operatora vzveshennogo sdviga s neogranichennymi operatornymi koeffitsientami”, Sib. mat. zh., 42:6 (2001), 1231–1243 | MR | Zbl
[9] Bobylev N. A., Krasnoselskii M. A., “Funktsionalizatsiya parametra i teorema rodstvennosti dlya avtonomnykh sistem”, Differ. uravn., 6:11 (1970), 1946–1952 | MR | Zbl
[10] Bobylev N. A., Krasnoselskii M. A., “Ob approksimatsii avtorelaksatsii v sistemakh avtomaticheskogo upravleniya”, Dokl. AN SSSR., 272:2 (1983), 267–271 | MR | Zbl
[11] Vasilev V. V., Krein S. G., Piskarev S. I., “Polugruppy operatorov, kosinus operator-funktsii i lineinye differentsialnye uravneniya”, Itogi nauki i tekhn. Ser. Mat. analiz., 28 (1990), 87–202 | MR | Zbl
[12] Vasilev V. V., Piskarev S. I., Differentsialnye uravneniya v banakhovom prostranstve. Teoriya polugrupp operatorov, Izd-vo MGU, M., 1996
[13] Vasilev V. V., Piskarev S. I., Bibliograficheskii ukazatel po teme «Differentsialnye uravneniya v abstraktnykh prostranstvakh», NIVTs MGU, M., 2001
[14] Vasilev V. V., Piskarev S. I., Selivanova N. Yu., “Prointegrirovannye polugruppy, $C$-polugruppy i ikh prilozheniya”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 131 (2017), 3–109
[15] Vishik M. I., Chepyzhov V. V., “Approksimatsiya traektorii, lezhaschikh na globalnom attraktore giperbolicheskogo uravneniya s bystro ostsilliruyuschei po vremeni vneshnei siloi”, Mat. sb., 194:9 (2003), 3–30 | MR | Zbl
[16] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[17] Gurova I. N., “O metodakh poludiskretizatsii dlya kvazilineinykh uravnenii s nekompaktnoi polugruppoi”, Izv. vuzov. Mat., 2000, no. 4, 60–65 | MR | Zbl
[18] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[19] Kokurin M. M., “O edinstvennosti resheniya obratnoi zadachi Koshi dlya differentsialnogo uravneniya s drobnoi proizvodnoi v banakhovom prostranstve”, Izv. vuzov. Mat., 2013, no. 12, 19–35 | Zbl
[20] Kornev A. A., “Ob approksimatsii attraktorov poludinamicheskikh sistem”, Mat. sb., 192:10 (2001), 19–32 | Zbl
[21] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975
[22] Krasnoselskii M. A., Zabreiko P. P., Pustylnik E. E., Sobolevskii P. E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR
[23] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967
[24] Piskarev S. I., “Otsenki pogreshnosti pri approksimatsii polugrupp operatorov drobyami Pade”, Izv. vuzov. Mat., 1979, no. 4, 33–38 | Zbl
[25] Piskarev S. I., “Skhodimost raznostnykh skhem pri reshenii nelineinykh parabolicheskikh uravnenii”, Mat. zametki., 44:1 (1988), 112–123 | MR
[26] Piskarev S. I., Differentsialnye uravneniya v banakhovom prostranstve i ikh approksimatsiya, M., 2005
[27] Popov A. Yu., Sedletskii A. M., “Raspredelenie kornei funktsii Mittag-Lefflera”, Sovr. mat. Fundam. napravl., 40 (2011), 3–171
[28] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987
[29] Sobolevskii P. E., “Teoriya polugrupp i ustoichivost raznostnykh skhem”, Teoriya operatorov v funktsionalnykh prostranstvakh, Novosibirsk, 1975, 304–337
[30] Sobolevskii P. E., “Nekotorye svoistva reshenii differentsialnykh uravnenii v drobnykh prostranstvakh”, Tr. In-ta mat. Voronezh. gos. un-ta., 1975, no. 74, 68–76
[31] Fedorov V. E., Romanova E. A., “Neodnorodnoe evolyutsionnoe uravnenie drobnogo poryadka v sektorialnom sluchae”, Itogi nauki i tekhn. Sovr. mat. prilozh. Temat. obzory., 149 (2018), 103–112
[32] Agase S. B., Raghavendra V. , “Existence of mild solutions of semilinear differential equations in Banach spaces”, Indian J. Pure Appl. Math., 21:9 (1990), 813–821 | MR | Zbl
[33] Ahues M., Piskarev S., “Spectral approximation of weakly singular integral operators. I. Convergence theory”, Proc. 4 Int. Conf. “Integral Methods in Science and Engineering” (Oulu, Finland, June 17–20, 1996), Longman, 1996 | MR
[34] Akhmerov R. R., Kamenskii M. I., Potapov A. S., Rodkina A. E., Sadovskii B. N., Measures of Noncompactness and Condensing Operators, Birkhäuser-Verlag, Basel, 1992 | MR | Zbl
[35] Akrivis G., “Stability of implicit and implicit–explicit multistep methods for nonlinear parabolic equations”, IMA J. Numer. Anal., 38:4 (2018), 1768–1796 | DOI | MR | Zbl
[36] Alikhanov A. A., “A new difference scheme for the time fractional diffusion equation”, J. Comput. Phys., 280 (2015), 424–438 | DOI | MR | Zbl
[37] Alkhayuon H. M., Ashwin P., “Rate-induced tipping from periodic attractors: partial tipping and connecting orbits”, Chaos., 28:3 (2018), 033608 | DOI | MR | Zbl
[38] Alouges F., Debussche A., “On the qualitative behavior of orbits of a parabolic partial differential equation and its discretizatin in the neighborhood of a hyperbolic fixed point”, Numer. Funct. Anal. Optim., 12 (1991), 253–269 | DOI | MR | Zbl
[39] Alvarez E., Lizama C. , “Weighted pseudo almost periodic solutions to a class of semilinear integro-differential equations in Banach spaces”, Adv. Differ. Eqs., 2015 (2015), 31 | DOI | MR
[40] Amann H., “Existence and regularity for semilinear parabolic evolution equations”, Ann. Scu. Norm. Sup. Pisa Cl. Sci., 11:4 (1984), 593–675 | MR
[41] Amann H., Linear and Quasilinear Parabolic Problems. Vol. I. Abstract Linear Theory, Birkhäuser-Verlag, Basel, 1995 | MR
[42] Ambrosetti A., Prodi G., A Primer of Nonlinear Analysis, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl
[43] Amir B., Maniar L., “Existence and asymptotic behavior of solutions of semilinear Cauchy problems with nondense domain via extrapolation spaces”, Rend. Circ. Mat. Palermo, II. Ser., 49:3 (2000), 481–496 | DOI | MR | Zbl
[44] Anselone P. M., Collectively Compact Operator Approximation Theory and Applications to Integral Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971 | MR | Zbl
[45] Aparicio R., Keyantuo V., “Well-posedness of degenerate integro-differential equations in function spaces”, Electr. J. Differ. Eqs., 2018 (2018), 79 | DOI | MR | Zbl
[46] Appell J., “Measures of noncompactness, condensing operators and fixed points: An application-oriented survey”, Fixed Point Theory., 6:2 (2005), 157–229 | MR | Zbl
[47] Appell J., De Pascale E., Vignoli A., Nonlinear Spectral Theory, de Gruyter, Berlin, 2004 | MR | Zbl
[48] Appell J., Zabrejko P.,, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[49] Aràndiga F., Caselles V., “On strongly stable approximations”, Rev. Mat. Univ. Complut. Madrid., 7:2 (1994), 207–217 | MR
[50] Arendt W., Batty C. J., Hieber M. K., Neubrander F., Vector-Valued Laplace Transforms and Cauchy Problems, Birkhäuser, Basel, 2001 | MR | Zbl
[51] Arrieta J. M., Carvalho A. N., Lozada-Cruz G., “Dynamics in dumbbell domains. I. Continuity of the set of equilibria”, J. Differ. Eqs., 231 (2006), 551–597 | DOI | MR | Zbl
[52] Arrieta J. M., Carvalho A. N., Rodriguez-Bernal A. , “Parabolic problems with nonlinear boundary conditions and critical nonlinearities”, J. Differ. Eqs., 156:2 (1999), 376–406 | DOI | MR | Zbl
[53] Arrieta J. M., Carvalho A. N., Rodriguez-Bernal A., “Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions”, J. Differ. Eqs., 168:1 (2000), 33–59 | DOI | MR | Zbl
[54] Arrieta J. M., Carvalho A. N., Rodriguez-Bernal A., “Attractors of parabolic problems with nonlinear boundary conditions. Uniform bounds”, Commun. Partial Differ. Eqs., 25:1-2 (2000), 1–37 | DOI | MR | Zbl
[55] Ashyralyev A. , “A note on fractional derivatives and fractional powers of operators”, J. Math. Anal. Appl., 357 (2009), 232–236 | DOI | MR | Zbl
[56] Ashyralyev A., Cuevas C., Piskarev S., “On well-posedness of difference schemes for abstract elliptic problems in $L^p([0,T];E)$ spaces”, Numer. Funct. Anal. Optim., 29:1-2 (2008), 43–65 | DOI | MR | Zbl
[57] Ashyralyev A., Martinez M., Pastor J., Piskarev S., “On well-posedness of abstract hyperbolic problems in function spaces”, Proc. WSPC., 2009, 679–688 | MR | Zbl
[58] Ashyralyev A., Pastor J., Piskarev S., Yurtsever H. A., “Second-order equations in functional spaces: qualitative and discrete well-posedness”, J. Abstr. Appl. Anal., 2015, 948321 | MR | Zbl
[59] Ashyralyev A., Piskarev S., Weis L., “On well-posedness of difference schemes for abstract parabolic equations in $L^p([0,T];E)$ spaces”, Numer. Funct. Anal. Optim., 23:7-8 (2002), 669–693 | DOI | MR | Zbl
[60] Ashyralyev A., Sobolevskii P. E., Well-Posedness of Parabolic Difference Equations, Birkhäuser-Verlag, Basel–Boston–Berlin, 1994 | MR
[61] Ashyralyev A., Sobolevskii P. E., New Difference Schemes for Partial Differential Equations, Birkhäuser-Verlag, Basel–Boston–Berlin, 2004 | MR | Zbl
[62] Atangana A., Derivative with a New Parameter. Theory, Methods and Applications, Elsevier/Academic Press, Amsterdam, 2016 | MR | Zbl
[63] Atangana A., Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology\, Elsevier/Academic Press, Amsterdam, 2018 | MR | Zbl
[64] Atangana A., “Nonvalidity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties”, Phys. A., 505 (2018), 688–706 | DOI | MR
[65] Atangana A., Goufo E. F. D., “Conservatory of Kaup–Kupershmidt equation to the concept of fractional derivative with and without singular kernel”, Acta Math. Appl. Sin., 34:2 (2018), 351–361 | DOI | MR | Zbl
[66] Bajlekova E. G., Fractional evolution equations in Banach spaces, Ph.D. Thesis, Eindhoven Univ. Technology, 2001 | MR | Zbl
[67] Bakaev N. Yu., Linear Discrete Parabolic Problems, North-Holland, Amsterdam, 2006 | MR | Zbl
[68] Bakaev N., Thomee V., Wahlbin L. B., “Maximum-norm estimates for resolvents of elliptic finite element operators”, Math. Comp., 72 (2003), 1597–1610 | DOI | MR | Zbl
[69] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York–Basel, 1980 | MR | Zbl
[70] Barbu V., Pavel N., “On the invertibility of $I+\exp(-tA)$ with $A$ maximal monotone”, Proc. World Congr. Nonlin. Anal., (Tampa, Florida, August 19–26, 1992), de Gruyter, 1992, 2231–2237 | MR
[71] Baskakov A. G., Krishtal I. A., “Spectral analysis of operators with the two-point Bohr spectrum”, J. Math. Anal. Appl., 308:2 (2005), 420–439 | DOI | MR | Zbl
[72] Baskakov A. G., Sintyaev Yu. N., “Finite-difference operators in the study of differential operators: solution estimates”, J. Differ. Eqs., 46:2 (2010), 214–223 | DOI | MR | Zbl
[73] Batty Charles J. K., Chill R., Tomilov Yu., “Strong stability of bounded evolution families and semigroups”, J. Funct. Anal., 193:1 (2002), 116–139 | DOI | MR | Zbl
[74] Bernardes Jr. N. C., Cirilo P. R., Darji U. B., Messaoudi A., Pujals E. R., “Expansivity and shadowing in linear dynamics”, J. Math. Anal. Appl., 461:1 (2018), 796–816 | DOI | MR | Zbl
[75] Beyn W.-J., “The numerical computation of connecting orbits in dynamical systems”, IMA J. Numer. Anal., 10:3 (1990), 379–405 | DOI | MR | Zbl
[76] Beyn W.-J., “Numerical methods for dynamical systems”, Proc. 4th Summer School “Advances in Numerical Analysis” (Lancaster, UK, 1990), Oxford Univ. Press, New York, 1991, 175–236 | MR
[77] Beyn W.-J., “On the numerical approximation of phase portraits near stationary points”, SIAM J. Numer. Anal., 24:5 (1987), 1095–1113 | DOI | MR | Zbl
[78] Beyn W.-J., Kolezhuk V. S., Pilyugin S. Yu., “Convergence of discretized attractors for parabolic equations on the line”, Zap. Nauch. Semin. LOMI, 318 (2004), 14–41 | MR | Zbl
[79] Beyn W.-J., Piskarev S. I., “Shadowing for discrete approximations of abstract parabolic equations”, Discr. Cont. Dynam. Syst. Ser. B., 10:1 (2008), 19–42 | MR | Zbl
[80] Bobylev N. A., Kim J. K., Korovin S. K., Piskarev S. I., “Semidiscrete approximations of semilinear periodic problems in Banach spaces”, Nonlin. Anal., 33:5 (1998), 473–482 | DOI | MR | Zbl
[81] Bruschi S. M., Carvalho A. N., Cholewa J. W., Dlotko T., “Uniform exponential dichotomy and continuity of attractors for singular perturbed damped wave equation”, J. Dynam. Differ. Eqs., 18 (2006), 767 | DOI | MR | Zbl
[82] Bu S., Cai G., “Solutions of second-order degenerate integro-differential equations in vector-valued function spaces”, Sci. China Math., 56:5 (2013), 1059–1072 | DOI | MR | Zbl
[83] Bu S., Cai G., “Well-posedness of second-order degenerate differential equations with finite delay”, Proc. Edinb. Math. Soc., 60 (2017), 349–360 | DOI | MR | Zbl
[84] Bu S., Cai G., “Well-posedness of second-order degenerate differential equations with finite delay in vector-valued function spaces”, Pac. J. Math., 288:1 (2017), 27–46 | DOI | MR | Zbl
[85] Bu S., Cai G., “Well-posedness of fractional degenerate differential equations with finite delay on vector-valued functional spaces”, Math Nach., 291 (2018), 759–773 | DOI | MR | Zbl
[86] Cao Q., Pastor J., Siegmund S., Piskarev S., “Approximations of parabolic equations at the vicinity of hyperbolic equilibrium point”, Numer. Funct. Anal. Optim., 35:10 (2014), 1287–1307 | DOI | MR | Zbl
[87] Carbone V. L., Carvalho A. N., Schiabel-Silva K., “Continuity of attractors for parabolic problems with localized large diffusion”, Nonlin. Anal. Theory Meth. Appl., 68:3 (2008), 515–535 | DOI | MR | Zbl
[88] Carvalho A. N., Langa J. A., Robinson J. C., Attractors for Infinite-Dimensional Non-Autonomous Dynamical Systems, Springer-Verlag, Berlin, 2013 | MR | Zbl
[89] Carvalho A. N., Piskarev S. I., “A general approximation scheme for attractors of abstract parabolic problems”, Numer. Funct. Anal. Optim., 27:7-8 (2006), 785–829 | DOI | MR | Zbl
[90] Chatelin F., Spectral Approximation of Linear Operators, Academic Press, New York, 1983 | MR | Zbl
[91] Cholewa J. W., Dlotko T. , Global Attractors in Abstract Parabolic Problems, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[92] Clément P., Gripenberg G., Londen S.-O., “Regularity properties of solutions of fractional evolution equations”, Evolution Equations and Their Applications in Physical and Life Sciences, eds. Lumer G. et al., Marcel Dekker, New York, 2001, 235–246 | MR
[93] Clément P., Londen S.-O., “Regularity aspects of fractional evolution equations”, Rend. Ist. Mat. Univ. Trieste., 31:2 (2000), 19–20 | MR
[94] Cong N. D., Doan T. S., Siegmund S., Tuan H. T., “On stable manifolds for planar fractional differential equations”, Appl. Math. Comput., 226 (2014), 157-–168 | MR | Zbl
[95] Cong N. D., Doan T. S., Siegmund S., Tuan H. T., “On stable manifolds for fractional differential equations in high-dimensional spaces”, Nonlin. Dynam., 86 (2016), 1885–1894 | DOI | MR | Zbl
[96] Crouzeix M., Larsson S., Piskarev S., Thomee V., “The stability of rational approximations of analytic semigroups”, BIT Numer. Math., 33:1 (1993), 74–84 | DOI | MR | Zbl
[97] Czaja R., Marin-Rubio P., “Pullback exponential attractors for parabolic equations with dynamical boundary conditions”, Taiwan. J. Math., 21:4 (2017), 819–839 | DOI | MR | Zbl
[98] da Prato G., Grisvard P., “Sommes d'opérateus linéaires et équations différentielles opérationnelles”, J. Math. Pures Appl. IX. Sér., 54:3 (1975), 305–387 | MR | Zbl
[99] da Prato G., Grisvard P., “Équations d'évolution abstraites non linéaires de type parabolique”, C. R. Acad. Sci. Paris. Sér. A., 283:9 (1976), 709–711 | MR | Zbl
[100] Danca M.-F., Feckan M., Kuznetsov N. V., Chen G., “Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system”, Nonlin. Dynam., 91:4 (2018), 2523–2540 | DOI | MR | Zbl
[101] Dancer E. N., “Upper and lower stability and index theory for positive mappings and applications”, Nonlin. Anal. Theory Meth. Appl., 17 (1991), 205–217 | DOI | MR | Zbl
[102] Deshpande A., Daftardar-Gejji V., “Local stable manifold theorem for fractional systems”, Nonlin. Dynam., 83 (2016), 2435–2452 | DOI | MR | Zbl
[103] Diethelem K., The Analysis of Fractional Differential Equations, Springer-Verlag, Heidelberg–Dordrecht–London–New York, 2004
[104] Eberhardt B., Greiner G., “Baillon's theorem on maximal regularity”, Acta Appl. Math., 27 (1992), 47–54 | DOI | MR | Zbl
[105] El-Borai M. M., “Some probability densities and fundamental solutions of fractional evolution equations”, Chaos Solitons Fract., 14 (2002), 433–440 | DOI | MR | Zbl
[106] Engel K.-J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 2000 | MR | Zbl
[107] Engel K.-J., Nagel R., A Short Course on Operator Semigroups\, Springer-Verlag, New York, 2006 | MR | Zbl
[108] Ergenç T., Karasözen B., Piskarev S., “Approximation for semilinear Cauchy problems involving second order equations in separable Banach spaces”, Nonlin. Anal. Theory Meth. Appl., 28 (1997), 1157–1165 | DOI | MR | Zbl
[109] Fan Z., “Characterization of compactness for resolvents and its applications”, Appl. Math. Comput., 232 (2014), 60–67 | MR | Zbl
[110] Fan Z., Dong Q., Li G., “Almost exponential stability and exponential stability of resolvent operator families”, Semigroup Forum., 93 (2016), 491–500 | DOI | MR | Zbl
[111] Fujita H., Mizutani A., “On the finite element method for parabolic equations. I. Approximation of holomorphic semigroups”, J. Math. Soc. Jpn., 28:4 (1976), 749–771 | DOI | MR | Zbl
[112] Fujita H., Suzuki T., “Evolution problems”, Handbook of Numerical Analysis, North-Holland, Amsterdam, 1991, 789–928 | MR | Zbl
[113] Gao G., Sun Z., “The finite difference approximation for a class of fractional sub-diffusion equations on a space unbounded domain”, J. Comput. Phys., 236 (2013), 443–460 | DOI | MR | Zbl
[114] Gal C. G., Warma M., Fractional-in-Time Semilinear Parabolic Equations and Applications, Springer, 2020 | MR | Zbl
[115] Garay B. M., “On structural stability of ordinary differential equations with respect to discretization methods”, Numer. Math., 72:4 (1996), 449–479 | DOI | MR | Zbl
[116] Garay B. M., Lee K., “Attractors under discretization with variable stepsize”, Discr. Contin. Dynam. Syst., 13:3 (2005), 827–841 | DOI | MR | Zbl
[117] Gearhart L., “Spectral theory for contraction semigroups on Hilbert spaces”, Trans. Am. Math. Soc., 236 (1978), 385–394 | DOI | MR | Zbl
[118] Goldstein J. A., Semigroups of Linear Operators and Applications, Clarendon Press, Oxford University Press, New York, 1985 | MR | Zbl
[119] Grigorieff R. D., “Zur Theorie linearer approximationsregulärer Operatoren, I, II”, Math. Nachr., 55 (1973), 233–249, 251–263 | DOI | MR | Zbl
[120] Grigorieff R. D., “Diskrete Approximation von Eigenwertproblemen. I. Qualitative Konvergenz”, Numer. Math., 24 (1975), 355–374 | DOI | MR
[121] Grigorieff R. D., “Diskrete Approximation von Eigenwertproblemen. II. Konvergenzordnung”, Numer. Math., 24 (1975), 415–433 | DOI | MR | Zbl
[122] Grigorieff R. D., “Diskrete Approximation von Eigenwertproblemen. III. Asymptotische Entwicklungen”, Numer. Math., 25:1 (1975/76), 79–97 | DOI | MR | Zbl
[123] Grigorieff R. D., “Über diskrete Approximationen nichtlinearer Gleichungen. 1. Art”, Math. Nachr., 69 (1975), 253–272 | DOI | MR | Zbl
[124] Grigorieff R. D., “Zur Charakterisierung linearer approximationsregulärer Operatoren”, Mathematical Papers Given on the Occasion of Ernst Mohr's 75th Birthday, Tech. Univ. Berlin, Berlin, 1985, 63–77 | MR
[125] Grigorieff R. D., Jeggle H., “Approximation von Eigenwertproblemen bei nichlinearer Parameterabhängigkeit”, Manuscr. Math., 10 (1973), 245–271 | DOI | MR | Zbl
[126] Guidetti D., Fractional derivative in spaces of continuous functions, preprint, 2019
[127] Guidetti D., Karasözen B., Piskarev S., “Approximation of abstract differential equations”, J. Math. Sci., 122:2 (2004), 3013–3054 | DOI | MR | Zbl
[128] Gurova I. N., “On a certain topological method for studying difference schemes”, Dokl. Akad. Nauk SSSR., 248:1 (1979), 25–28 | MR | Zbl
[129] Gurova I. N., Kamenskii M. I., “On the semidiscretization method in the problem of periodic solutions of quasilinear autonomous parabolic equations”, Differ. Eqs., 32:1 (1996), 106–112 | MR | Zbl
[130] Hu Y., He J. H., “On fractal space-time and fractional calculus”, Thermal Sci., 20:3 (2016), 773–777 | DOI
[131] Haase M., The Functional Calculus for Sectorial Operators, Birkhäuser-Verlag, Basel, 2006 | MR | Zbl
[132] Hale J. K., Asymptotic Behavior of Dissipative Systems, Am. Math. Soc., 1989 | MR
[133] Hale J. K., Lin X. B., Raugel G., “Upper semicontinuity of attractors for approximations of semigroups and partial differential equations”, Math. Comp., 50 (1988), 89–123 | DOI | MR | Zbl
[134] Han X., Kloeden P., Attractors Under Discretisation, Springer, 2017 | MR | Zbl
[135] He B., Cao J., Yang B., “Weighted Stepanov-like pseudo-almost automorphic mild solutions for semilinear fractional differential equations”, Adv. Differ. Eqs., 2015 (2015), 74 | DOI | MR
[136] Henry D., Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981 | MR | Zbl
[137] Hess P., Periodic-Parabolic Boundary-Value Problems and Positivity, Longman, 1991 | MR | Zbl
[138] Hoppe R. H. W., “A constructive approach to the Bellman semigroup”, Nonlin. Anal. Theory Meth. Appl., 9:11 (1985), 1165–1181 | DOI | MR | Zbl
[139] Huang J., Li J., Shen T., “Dynamics of stochastic modified Boussinesq approximation equation driven by fractional Brownian motion”, Dynam. Partial Differ. Eqs., 11:2 (2014), 183–209 | DOI | MR | Zbl
[140] Irwin M. C.,, Smooth Dynamical Systems, World Scientific, River Edge, New Jersey, 2001 | MR | Zbl
[141] Jin B., Lazarov R., Pasciak J., Zhou Z., “Galerkin FEM for fractional order parabolic equations with initial data in $H^{-s}$, $0\leq s\leq1$”, Numerical Analysis and Its Applications, 2013, 24–37 | DOI | MR
[142] Jin B., Lazarov R., Zhou Z., “Error estimates for a semidiscrete finite element method for fractional order parabolic equations”, SIAM J. Numer. Anal., 51:1 (2013), 445–466 | DOI | MR | Zbl
[143] Jin B., Li B., Zhou Zh., “Discrete maximal regularity of time-stepping schemes for fractional evolution equations”, Numer. Math., 138:1 (2018), 101–131 | DOI | MR | Zbl
[144] Kaashoek M. A., Verduyn S. M., “An integrability condition on the resolvent for hyperbolicity of the semigroup”, J. Differ. Eqs., 112:2 (1994), 374–406 | DOI | MR | Zbl
[145] Kamenskii M., Obukhovskii V., Petrosyan G., Jen-Chih Yao, “On semilinear fractional-order differential inclusions in Banach spaces”, Fixed Point Theory., 18:1 (2017), 269–292 | DOI | MR | Zbl
[146] Kamenskii M., Obukhovskii V., Petrosyan G., Jen-Chih Yao, “On approximate solutions for a class of semilinear fractional-order differential equations in Banach spaces”, Fixed Point Theory Appl., 2017 (2017), 28 | DOI | MR | Zbl
[147] Kamenskii M., Obukhovskii V., Petrosyan G., Jen-Chin Yao, “Existence and approximation of solutions to nonlocal boundary-value problems for fractional differential inclusions”, Fixed Point Theory Appl., 2019 (2019), 2 | DOI | MR | Zbl
[148] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Walter de Gruyter, Berlin, 2001 | MR
[149] Karatay I., Bayramoglu S. R., “A characteristic difference scheme for time-fractional heat equations based on the Crank–Nicholson difference schemes”, Abstr. Appl. Anal., 2012 (2012), 548292 | DOI | MR | Zbl
[150] Katayama S., Global Solutions and the Asymptotic Behavior for Nonlinear Wave Equations with Small Initial Data, Math. Soc. Jpn., Tokyo, 2017 | MR | Zbl
[151] Kato T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1995 | MR | Zbl
[152] Keyantuo V., Lizama C., Warma M., “Spectral criteria for slvability of boundary value problems and positivity of solutions of time-fractional differential equations”, Abstr. Appl. Anal., 2013 (2013), 614328 | DOI | MR | Zbl
[153] Keyantuo V., Lizama C., Warma M., “Existence, regularity, and representation of solutions of time fractional wave equations”, Electr. J. Differ. Eqs., 2017 (2017), 222 | DOI | MR | Zbl
[154] Keyantuo V., Lizama C., Warma M., “Existence, regularity, and representation of solutions of time fractional diffusion equations”, Adv. Differ. Eqs., 21:9-10 (2016), 837–886 | MR | Zbl
[155] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[156] Kloeden P. E., “Upper semicontinuity of attractors of delay differential equations in the delay”, Bull. Austr. Math. Soc., 73 (2006), 299–305 | DOI | MR
[157] Kloeden P. E., Lorenz J., “Stable attracting sets in dynamical system and their one-step discretizations”, SIAM J. Numer. Anal., 23 (1986), 986–995 | DOI | MR | Zbl
[158] Kloeden P. E., Lorenz J., “Lyapunov stability and attractors under discretization”, Proc. Equadiff 87 Conf. (Xanthi, Greece, August 1987), Marcel-Dekker, 1989, 361–368 | MR
[159] Kloeden P. E., Piskarev S. I., “Discrete convergence and the equivalence of equi-attraction and the continuous convergence of attractors”, Int. J. Dynam. Syst. Differ. Eqs., 1 (2007), 38–43 | MR | Zbl
[160] Kostić M., “A note on semilinear fractional equations governed by abstract differential operators”, An. Ştiinţ. Univ. ACuza Iaşi l. I., Ser. Nouă, Mat., 62:2 (2016), 757–762 | MR | Zbl
[161] Kostin I. N., “Lower semicontinuity of a nonhyperbolic attractor”, J. London Math. Soc., 52 (1995), 568–582 | DOI | MR | Zbl
[162] Kovacs B., Li B., Lubich C., “A-Stable time discretizations preserve maximal parabolic regularity”, SIAM J. Numer. Anal., 54:6 (2016), 3600–3624 | DOI | MR | Zbl
[163] Ladyzhenskaya O., Attractors for Semigroups and Evolution Equations, Cambridge Univ. Press, Cambridge, 1991 | MR | Zbl
[164] Larsson S., Nonsmooth data error estimates with applications to the study of the long-time behavior of finite element solutions of semilinear parabolic problems, Chalmers Univ. Technol., 1992
[165] Larsson S., “Numerical analysis of semilinear parabolic problems”, The Graduate Student's Guide to Numerical Analysis'98, eds. Ainsworth M. et al., Springer-Verlag, Berlin, 1999, 83–117 | DOI | MR | Zbl
[166] Larsson S., Pilyugin S. Yu., Numerical shadowing near the global attractor for a semilinear parabolic equation, Chalmers Univ. Technol., 1998
[167] Larsson S., Sanz-Serna J. M., “The behavior of finite element solutions of semilinear parabolic problems near stationary points”, SIAM J. Numer. Anal., 31:4 (1994), 1000–1018 | DOI | MR | Zbl
[168] Larsson S., Sanz-Serna J.-M., “A shadowing result with applications to finite element approximation of reaction-diffusion equations”, Math. Comp., 68:225 (1999), 55–72 | DOI | MR | Zbl
[169] Latushkin Y., Pogan A., Schnaubelt R., “Dichotomy and Fredholm properties of evolution equations”, J. Oper. Theory., 58:2 (2007), 387–414 | MR | Zbl
[170] Latushkin Y., Prüss J., Schnaubelt R., “Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions”, J. Evol. Eqs., 6 (2006), 537–576 | DOI | MR | Zbl
[171] Latushkin Y., Prüss J., Schnaubelt R., “Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions”, Discr. Cont. Dynam. Syst. Ser. B., 9 (2008), 595–633 | DOI | MR | Zbl
[172] Li C., Chen A., “Numerical methods for fractional partial differential equations”, Int. J. Comp. Math., 95:6-7 (2018), 1048–1099 | DOI | MR
[173] Li C. Y., Li M., “Hölder regularity for abstract fractional Cauchy problems with order in $(0,1)$”, J. Appl. Math. Phys., 6 (2018), 310–319 | DOI
[174] Li D., Kloeden P. E., “Equi-attraction and the continuous dependence of attractors on parameters”, Glasgow Math. J., 46 (2004), 131–141 | DOI | MR | Zbl
[175] Li K., Jia J., “Existence and uniqueness of mild solutions for abstract delay fractional differential equations”, Comput. Math. Appl., 62:3 (2011), 1398–1404 | DOI | MR | Zbl
[176] Li M., Chen C., Li F., “On fractional powers of generators of fractional resolvent families”, J. Funct. Anal., 259 (2010), 2702–2726 | DOI | MR | Zbl
[177] Li M., Morozov V., Piskarev S., “On the approximations of derivatives of integrated semigroups”, J. Inv. Ill-Posed Probl., 18:5 (2010), 515–550 | MR | Zbl
[178] Li M., Morozov V., Piskarev S., “On approximations of derivatives of integrated semigroups, II”, J. Inv. Ill-Posed Probl., 19:3-4 (2011), 643–688 | MR | Zbl
[179] Li M., Piskarev S., “On approximation of integrated semigroups”, Taiwan. J. Math., 14:6 (2010), 2137–2161 | MR | Zbl
[180] Li M., Zheng Q., “On spectral inclusions and approximations of $a$ times resolvent families”, Semigroup Forum., 69:3 (2004), 356–368 | MR | Zbl
[181] Lin K.-B., Liu H., Pang C.-T., “Approximate controllability of semilinear functional differential equations with Hille–Yosida operator”, J. Nonlin. Convex Anal., 17:2 (2016), 275–285 | MR | Zbl
[182] Lin Y., Xu C., “Finite difference spectral approximations for the time-fractional diffusion equation”, J. Comput. Phys., 225 (2007), 1533–1552 | DOI | MR | Zbl
[183] Liu F., Wu H. X., “Regularity of discrete multisublinear fractional maximal functions”, Sci. China Math., 60 (2017), 1461–1476 | DOI | MR | Zbl
[184] Liu L., Fan Zh., Li G., Piskarev S., “Maximal regularity for fractional Cauchy equation in Hölder space and its approximation”, Comput. Meth. Appl. Math., 19:2 (2019), 160–178 | MR
[185] Liu H., Chang J. C., “Existence for a class of partial differential equations with nonlocal conditions”, Nonlin. Anal. Theory Meth. Appl., 70 (2009), 3076–3083 | DOI | MR | Zbl
[186] Liu R., Li M., Pastor J., Piskarev S., “On the approximation of fractional resolution families”, Differ. Eqs., 50:7 (2014), 927–937 | DOI | MR | Zbl
[187] Liu R., Li M., Piskarev S. I., “Approximation of semilinear fractional Cauchy problem”, Comput. Meth. Appl. Math., 15:2 (2015), 203–212 | DOI | MR | Zbl
[188] Liu R., Li M., Piskarev S. I., “Stability of difference schemes for fractional equations”, Differ. Eqs., 51 (2015), 904–924 | DOI | MR | Zbl
[189] Liu R., Li M., Piskarev S. I., “The order of convergence of difference schemes for fractional equations”, Numer. Funct. Anal. Optim., 38 (2017), 754–769 | DOI | MR | Zbl
[190] Liu R., Piskarev S., Well-posedness and approximation for nonhomogeneous fractional differential equations, 10.1080/01630563.2021.1901117 (2021)
[191] Liu R., Piskarev S., “The order of convergence of difference schemes for nonhomogeneous fractional equations”, Numer. Funct. Anal. Optim. | MR
[192] Liu R., Piskarev S., “Approximation of semilinear fractional Cauchy problem, II”, Semigroup Forum., 101:3 (2020), 751–768 | DOI | MR | Zbl
[193] Lizama C., “Abstract linear fractional evolution equations”, Fractional Differential Equations, eds. Kochubei A., Luchko Yu., de Gruyter, Berlin–Boston, 2019, 465–498 | DOI | MR
[194] Lizama C., “Abstract linear fractional evolution equations”, Fractional Differential Equations, eds. Kochubei A., Luchko Yu., de Gruyter, Berlin–Boston, 2019, 499–514 | DOI | MR
[195] Lizama C., Pereira A., Ponce R., “On the compactness of fractional resolvent operator functions”, Semigroup Forum., 93 (2016), 363–374 | DOI | MR | Zbl
[196] Lord G. J., Stuart A. M., “Discrete Gevrey regularity attractors and upper semicontinuity for a finite difference approximation to the Ginzburg–Landau equation”, Numer. Funct. Anal. Optim., 16:7-8 (1995), 1003–1047 | DOI | MR | Zbl
[197] Lorenz T., “Differential equations for closed sets in a Banach space, survey and extension”, Vietnam J. Math., 45:1-2 (2017), 5–49 | DOI | MR | Zbl
[198] Mainardi F., “Fractional diffusive waves in viscoelastic solids”, Nonlinear Waves in Solids, eds. Wegner J. L., Norwood F. R., Fairfield, 1995, 93–97
[199] Martínez C., Sanz M., The Theory of Fractional Powers of Operators, North-Holland, Amsterdam, 2001 | MR | Zbl
[200] Matsumoto T., Tanaka N., “Abstract Cauchy problem for weakly continuous operators”, J. Math. Anal. Appl., 435:1 (2016), 267–285 | DOI | MR | Zbl
[201] Meng F., Liu C., Zhang C. , “Existence of multiple equilibrium points in global attractor for damped wave equation”, Boundary-Value Probl., 2019 (2019), 6 | DOI | MR
[202] Miller K. S., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993 | MR | Zbl
[203] Miyazaki R., Kim D., Naito T., Jong Son Shin, “Fredholm operators, evolution semigroups, and periodic solutions of nonlinear periodic systems”, J. Differ. Eqs., 257:11 (2014), 4214–4247 | DOI | MR | Zbl
[204] Moshrefi-Torbati M., Hammond J. K., “Physical and geometrical interpretation of fractional operators”, J. Franklin Inst., 335B:6 (1998), 1077–1086 | DOI | MR | Zbl
[205] Nevanlinna O., Vainikko G., “Limit spectrum of discretely converging operators”, Numer. Funct. Anal. Optim., 17:7-8 (1996), 797–808 | DOI | MR | Zbl
[206] Olszowy L., “Existence of mild solutions for semilinear nonlocal Cauchy problems in separable Banach spaces”, Z. Anal. Anwend., 32:2 (2013), 215–232 | DOI | MR | Zbl
[207] Olszowy L., “Existence of mild solutions for the semilinear nonlocal problem in Banach spaces”, Nonlin. Anal., 81 (2013), 211–223 | DOI | MR | Zbl
[208] Ostermann A., Palencia C., “Shadowing for nonautonomous parabolic problems with applications to long-time error bounds”, SIAM J. Numer. Anal., 37:5 (2000), 1399–1419 | DOI | MR | Zbl
[209] Owolabi K. M., Atangana A., “Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems”, Comput. Appl. Math., 37:2 (2018), 2166–2189 | DOI | MR | Zbl
[210] Owolabi K. M., Atangana A., “Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations”, Chaos Solitons Fract., 111 (2018), 119–127 | DOI | MR | Zbl
[211] Palmer K. J., “A perturbation theorem for exponential dichotomies”, Proc. Roy. Soc. Edinburgh Sec. A, 106:1-2 (1987), 25–37 | DOI | MR | Zbl
[212] Palmer K. J., “Exponential dichotomies and Fredholm operators”, Proc. Am. Math. Soc., 104:1 (1988), 149–156 | DOI | MR | Zbl
[213] Palmer K., Shadowing in Dynamical Systems. Theory and Applications, Kluwer Academic, Dordrecht, 2000 | MR | Zbl
[214] Pastor J., Piskarev S., “The exponential dichotomy under discretization on general approximation scheme”, Adv. Numer. Anal., 2011 (2011), 582740 | MR | Zbl
[215] Paunonen L., “Robustness of strong stability of semigroups”, J. Differ. Eqs., 257:12 (2014), 4403–4436 | DOI | MR | Zbl
[216] Pazy A., Semigroups of Differential Equations, Marcel Dekker, New York–Basel, 1983
[217] Petryshyn W. V., Approximation-Solvability of Nonlinear Functional and Differential Equations, Marcel Dekker, New York–Basel–Hong Kong, 1993 | MR | Zbl
[218] Pilyugin S. Yu., Shadowing in Dynamical Systems, Springer-Verlag, Berlin, 1999 | MR | Zbl
[219] Piskarev S., “On approximation of holomorphic semigroups”, Tartu Riikl. Ul. Toimetised, 492 (1979), 3–23 | MR
[220] Piskarev S. I., “Estimates for the rate of convergence in the solution of ill-posed problems for evolution equations”, Izv. Akad. Nauk SSSR. Ser. Mat., 51:3 (1987), 676–687 | MR | Zbl
[221] Piskarev S. I., “Approximation of positive $C_0$-semigroups of operators”, Differ. Uravn., 27:7 (1991), 1245–1250 | MR
[222] Piskarev S. and S. Siegmund, “Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations”, Nonlin. Dynam, 95:1 (19), 685–697 | DOI | MR | Zbl
[223] Podlubny I., Fractional Differential Equations, Academic Press, 1998 | MR
[224] Ponce R., “Existence of mild solutions to nonlocal fractional Cauchy problems via compactness”, Abstr. Appl. Anal., 2016 (2016), 4567092 | DOI | MR | Zbl
[225] Poongodi R., Murugesu R., “Existence of mild solution for fractional nonlocal neutral impulsive integro-differential equations with state-dependent delay”, Nonlin. Stud., 23:2 (2016), 209–223 | MR | Zbl
[226] Poongodi R., Murugesu R., Nirmalkumar R., “Exact controllability results for a class of abstract nonlocal Cauchy problem with impulsive conditions”, Evol. Equ. Control Theory., 6:4 (2017), 599–613 | DOI | MR | Zbl
[227] Prüss J., Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993 | MR | Zbl
[228] Ran Y., Li J., “Pullback attractors for non-autonomous reaction–diffusion equation with infinite delays in $C_{\gamma, L^r(\Omega)}$ or $C_{\gamma,W^{1,r}(\Omega)}$”, Boundary Value Probl., 2018 (2018), 99 | DOI | MR
[229] Rau R. T., “Hyperbolic evolution groups and dichotomic evolution families”, J. Dynam. Differ. Eqs., 6:2 (1994), 335–350 | DOI | MR | Zbl
[230] Rau R. T., “Hyperbolic evolution semigroups on vector valued function spaces”, Semigroup Forum., 48:1 (1994), 107–118 | DOI | MR | Zbl
[231] Robinson J. C., Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[232] Robinson R. C., An Introduction to Dynamical Systems: Continuous and Discrete, Pearson Prentice Hall, Upper Saddle River, New Jersey, 2004 | MR | Zbl
[233] Rottmann J., Spectral Properties of Mixed Hyperbolic-Parabolic Systems, Univ. Bielefeld, 2005
[234] Sano H., Tanaka N., “Well-posedness and flow invariance for semilinear functional differential equations governed by nondensely defined operators”, Differ. Integral Eqs., 30:9-10 (2017), 695–734 | MR | Zbl
[235] Sayevand K., Pichaghchi K., “Successive approximation: a survey on stable manifold of fractional differential systems”, Fract. Calc. Appl. Anal., 18 (2015), 621–641 | DOI | MR | Zbl
[236] Sell G. R., You Y., Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002 | MR | Zbl
[237] Shomberg J. L., “Attractors for damped semilinear wave equations with singularly perturbed acoustic boundary conditions”, Electron. J. Differ. Eqs., 2018, no. 152 | MR
[238] Siegmund S., Piskarev S., “Approximations of stable manifolds in the vicinity of hyperbolic equilibrium points for fractional differential equations”, Nonlin. Dynam., 95:1 (2019), 685–697 | DOI | Zbl
[239] Smale S., “Differentiable dynamical systems”, Bull. Am. Math. Soc., 73 (1967), 747–817 | DOI | MR | Zbl
[240] Sobolevskii P. E., “The coercive solvability of difference equations”, Dokl. Akad. Nauk SSSR., 201 (1971), 1063–1066 | MR | Zbl
[241] Stuart A., “Perturbation theory for infinite-dimensional dynamical systems”, Proc. Sixth SERC Summer School in Numerical Analysis (Leicester, UK, July 18–29, 1994), Clarendon Press, Oxford, 1995, 181–290 | MR | Zbl
[242] Stuart A., “Convergence and stability in the numerical approximation of dynamical systems”, The State of the Art in Numerical Analysis, Oxford Univ. Press, New York, 1997, 145–169 | MR | Zbl
[243] Stuart A. M., Humphries A. R., Numerical Analysis and Dynamical Systems, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[244] Stummel F., “Diskrete Konvergenz linearer Operatoren”, Proc. Conf. “Linear Operators and Approximation” (Oberwolfach Math. Res. Inst., 1971), Birkhäuser, Basel, 1972, 196–216 | MR
[245] Stummel F., “Perturbation of domains in elliptic boundary value problems”, Lect. Notes Math., 503 (1976), 110–136 | DOI | MR | Zbl
[246] Tatar N., “The decay rate for a fractional differential equation”, J. Math. Anal. Appl., 295 (2004), 303–314 | DOI | MR | Zbl
[247] Tateishi A. A., Ribeiro H. V., Lenzi E. K., “The role of fractional time-derivative operators on anomalous diffusion”, Front. Phys., 5 (2017), 52 | DOI
[248] Thomée V., “Finite element methods for parabolic problems. Some steps in the evolution”, Finite Element Methods, Marcel Dekker, New York, 1994, 433–442 | MR | Zbl
[249] Tomilov Yu., “A resolvent approach to stability of operator semigroups”, J. Operator Theory., 46 (2001), 63–98 | MR
[250] Tran Dinh Ke and Tran Van Tuan, “Finite-time attractivity for semilinear fractional differential equations”, Res. Math., 73:7 (2018), 1–19 | MR | Zbl
[251] Trotter H. F., “Approximation of semigroups of operators”, Pac. J. Math., 8 (1958), 887–919 | DOI | MR | Zbl
[252] Trotter H. F., “Approximation and perturbation of semigroups”, Proc. Conf. “Linear Operators and Approximation” (Oberwolfach Math. Res. Inst., 1974), Birkhäuser, Basel, 1974, 3–21 | MR
[253] Tuan Hoang The, Siegmund S., Son Doan Thai, Cong Nguyen, “An instability theorem for nonlinear fractional differential systems”, Discr. Contin. Dynam. Syst. Ser. B., 22:8 (2017), 3079–3090 | MR | Zbl
[254] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Springer-Verlag, Berlin–Heidelberg, 2013 | MR | Zbl
[255] Ushijima T., “Approximation theory for semigroups of linear operators and its application to approximation of wave equations”, Jpn. J. Math., 1:1 (1975), 185–224 | DOI | MR
[256] Vainikko G., Funktionalanalysis der Diskretisierungsmethoden, Teubner Verlag B.G., Leipzig, 1976 | MR | Zbl
[257] Vainikko G., “Über die Konvergenz und Divergenz von Näherungsmethoden bei Eigenwertproblemen”, Math. Nachr., 78 (1977), 145–164 | DOI | MR | Zbl
[258] Vainikko G., “Über Konvergenzbegriffe für lineare Operatoren in der numerischen Mathematik”, Math. Nachr., 78 (1977), 165–183 | DOI | MR | Zbl
[259] Vainikko G., “Approximative methods for nonlinear equations (two approaches to the convergence problem)”, Nonlin. Anal. Theory Meth. Appl., 2 (1978), 647–687 | DOI | MR | Zbl
[260] Vainikko G., “Foundations of finite difference method for eigenvalue problems”, Proc. Summer School “The Use of Finite Element Method and Finite Difference Method in Geophysics” (Liblice, 1977), Česk. Akad. Věd, Prague, 1978, 173–192 | MR
[261] Vainikko G., Piskarev S., “Regularly compatible operators”, Izv. Vyssh. Ucheb. Zaved. Mat., 1977, no. 10, 25–36 | MR | Zbl
[262] Vasiliev V. V., Piskarev S. I., “Differential equations in Banach spaces. II. Cosine-operator functions”, J. Math. Sci., 122:2 (2004), 3055–3174 | DOI | MR
[263] Vijayakumar V., Murugesu R., Poongodi R., Dhanalakshmi S., “Controllability of second-order impulsive nonlocal Cauchy problem via measure of noncompactness”, Mediterr. J. Math., 14:1 (2017), 3 | DOI | MR | Zbl
[264] Voigt J., “On the convex compactness property for the strong operator topology”, Note Mat., 12 (1992), 259–269 | MR | Zbl
[265] Vrabie I. I., “A class of semilinear delay differential equations with nonlocal initial conditions”, Dynam. Partial Differ. Eqs., 15:1 (2018), 45–60 | DOI | MR | Zbl
[266] Vu Quoc Phong, “A new proof and generalizations of Gearhart's theorem”, Proc. Am. Math. Soc., 135:7 (2007), 2065–2072 | DOI | MR | Zbl
[267] Vu Quoc Phong, “The spectral radius, hyperbolic operators and Lyapunov's theorem”, Evolution Equations and Their Applications in Physical and Life Sciences, Marcel Dekker, New York, 2001, 187–194 | MR | Zbl
[268] Vu Quoc Phong, “On the exponential stability and dichotomy of $C_0$-semigroups”, Stud. Math., 132:2 (1999), 141–149 | DOI | MR | Zbl
[269] Vu Quoc Phong, Schuler E., “The operator equation $AX-XB=C$, admissibility, and asymptotic behavior of differential equations”, J. Differ. Eqs., 145:2 (1998), 394–419 | DOI | MR | Zbl
[270] Wang R. N., Chen D. H., Xiao T. J., “Abstract fractional Cauchy problems with almost sectorial operators”, J. Differ. Eqs., 252 (2012), 202–235 | DOI | MR | Zbl
[271] Wang R. N., Xiao T. J., Liang J., “A note on the fractional Cauchy problems with nonlocal initial conditions”, Appl. Math. Lett., 24 (2011), 1435–1442 | DOI | MR | Zbl
[272] Xia Zh., Wang D., Ching-Feng Wen, and Jen-Chih Yao, “Pseudo asymptotically periodic mild solutions of semilinear functional integro-differential equations in Banach spaces”, Math. Meth. Appl. Sci., 40:18 (2017), 7333–7355 | DOI | MR | Zbl
[273] Xiao J.-Zh., Wang Zh.-Y., Liu J., “Hausdorff product measures and $C^1$-solution sets of abstract semilinear functional differential inclusions”, Topol. Meth. Nonlin. Anal., 49:1 (2017), 273–298 | MR | Zbl
[274] Yosida K., Functional Analysis, Springer-Verlag, Berlin, 1965 | MR | Zbl
[275] Yu J., Wang Z., “Existence of mild solutions for nonlocal impulsive evolution equations with noncompact semigroups”, J. Nanchang Univ. Nat. Sci., 40:4 (2016), 319–323 | MR | Zbl
[276] Zhang H., Zhang W., Hu Q., “Global existence and blow-up of solution for the semilinear wave equation with interior and boundary source terms”, Boundary-Value Probl., 2019 (2019), 18 | DOI | MR
[277] Zhang J., Zhong C., You B., “The existence of multiple equilibrium points in global attractors for some symmetric dynamical systems, II”, Nonlin. Anal. Real World Appl., 36 (2017), 44–55 | DOI | MR | Zbl
[278] Zhang Q., Li G., “Global attractors of strongly damped wave equations with critical nonlinearities”, Acta Math. Appl. Sin., 40:2 (2017), 192–203 | MR | Zbl
[279] Zhao X., “Fourier spectral approximation to global attractor for 2D convective Cahn–Hilliard equation”, Bull. Malays. Math. Sci. Soc. (2)., 41:2 (2018), 1119–1138 | MR | Zbl