Estimates of solutions in the model of interaction of populations with several delays
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 84-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of differential equations with several delays, which describes the interaction of $n$ species of microorganisms. We obtain sufficient conditions for the asymptotic stability of a nontrivial equilibrium state corresponding to the partial survival of populations. We establish estimates of solutions that characterize the rate of stabilization at infinity and indicate estimates of the attraction set of a given equilibrium state. The results are obtained by using the modified Lyapunov–Krasovsky functional.
Keywords: model of interaction of populations, equation with retarded argument, asymptotic stability, estimate of solution, attraction set, modified Lyapunov–Krasovsky functional.
@article{INTO_2020_188_a7,
     author = {M. A. Skvortsova},
     title = {Estimates of solutions in the model of interaction of populations with several delays},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {84--105},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/}
}
TY  - JOUR
AU  - M. A. Skvortsova
TI  - Estimates of solutions in the model of interaction of populations with several delays
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 84
EP  - 105
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/
LA  - ru
ID  - INTO_2020_188_a7
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%T Estimates of solutions in the model of interaction of populations with several delays
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 84-105
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/
%G ru
%F INTO_2020_188_a7
M. A. Skvortsova. Estimates of solutions in the model of interaction of populations with several delays. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 84-105. http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/

[1] Demidenko G. V., Matrichnye uravneniya, Izd-vo Novosib. un-ta, Novosibirsk, 2009

[2] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. mat. mekh. inform., 5:3 (2005), 20–28 | Zbl

[3] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zh., 48:5 (2007), 1025–1040 | MR | Zbl

[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959

[5] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zh. industr. mat., 16:3 (2013), 122–132 | Zbl

[6] Skvortsova M. A., “Ustoichivost reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Mat. zametki SVFU., 23:2 (2016), 108–120 | Zbl

[7] Skvortsova M. A., “Asimptoticheskaya ustoichivost polozhenii ravnovesiya i otsenki reshenii v odnoi modeli zabolevaniya”, Dinam. sist., 7 (35):3 (2017), 257–274 | MR | Zbl

[8] Skvortsova M. A., “Otsenki reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Izv. Irkutsk. gos. un-ta. Ser. mat., 25 (2018), 109–125 | MR | Zbl

[9] Skvortsova M. A., “Ob otsenkakh reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Sib. elektron. mat. izv., 15 (2018), 1697–1718 | MR | Zbl

[10] Skvortsova M. A., “Asimptoticheskie svoistva reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Mat. zametki SVFU., 26:4 (2019)

[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[12] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differ. uravn., 41:8 (2005), 1137–1140 | MR | Zbl

[13] Mondie S., Kharitonov V. L., “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control., 50:2 (2005), 268–273 | DOI | MR | Zbl

[14] Wolkowicz G. S. K., Xia H., “Global asymptotic behavior of a chemostat model with discrete delays”, SIAM J. Appl. Math., 57:4 (1997), 1019–1043 | DOI | MR | Zbl