Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_188_a7, author = {M. A. Skvortsova}, title = {Estimates of solutions in the model of interaction of populations with several delays}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {84--105}, publisher = {mathdoc}, volume = {188}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/} }
TY - JOUR AU - M. A. Skvortsova TI - Estimates of solutions in the model of interaction of populations with several delays JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 84 EP - 105 VL - 188 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/ LA - ru ID - INTO_2020_188_a7 ER -
%0 Journal Article %A M. A. Skvortsova %T Estimates of solutions in the model of interaction of populations with several delays %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 84-105 %V 188 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/ %G ru %F INTO_2020_188_a7
M. A. Skvortsova. Estimates of solutions in the model of interaction of populations with several delays. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 84-105. http://geodesic.mathdoc.fr/item/INTO_2020_188_a7/
[1] Demidenko G. V., Matrichnye uravneniya, Izd-vo Novosib. un-ta, Novosibirsk, 2009
[2] Demidenko G. V., Matveeva I. I., “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. mat. mekh. inform., 5:3 (2005), 20–28 | Zbl
[3] Demidenko G. V., Matveeva I. I., “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zh., 48:5 (2007), 1025–1040 | MR | Zbl
[4] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, GIFML, M., 1959
[5] Matveeva I. I., “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Sib. zh. industr. mat., 16:3 (2013), 122–132 | Zbl
[6] Skvortsova M. A., “Ustoichivost reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Mat. zametki SVFU., 23:2 (2016), 108–120 | Zbl
[7] Skvortsova M. A., “Asimptoticheskaya ustoichivost polozhenii ravnovesiya i otsenki reshenii v odnoi modeli zabolevaniya”, Dinam. sist., 7 (35):3 (2017), 257–274 | MR | Zbl
[8] Skvortsova M. A., “Otsenki reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Izv. Irkutsk. gos. un-ta. Ser. mat., 25 (2018), 109–125 | MR | Zbl
[9] Skvortsova M. A., “Ob otsenkakh reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Sib. elektron. mat. izv., 15 (2018), 1697–1718 | MR | Zbl
[10] Skvortsova M. A., “Asimptoticheskie svoistva reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Mat. zametki SVFU., 26:4 (2019)
[11] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970
[12] Khusainov D. Ya., Ivanov A. F., Kozhametov A. T., “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differ. uravn., 41:8 (2005), 1137–1140 | MR | Zbl
[13] Mondie S., Kharitonov V. L., “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control., 50:2 (2005), 268–273 | DOI | MR | Zbl
[14] Wolkowicz G. S. K., Xia H., “Global asymptotic behavior of a chemostat model with discrete delays”, SIAM J. Appl. Math., 57:4 (1997), 1019–1043 | DOI | MR | Zbl