Boundary-value problems for one class of composite equations with the wave operator in the senior part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 76-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the solvability of local and nonlocal boundary-value problems for composite (Sobolev-type) equations $ D^{2p+1}_t\left(D^2_t-\Delta u \right) + Bu = f(x,t), $ where $D^k_t={\partial^k}/{\partial t^k}$, $\Delta$ is the Laplace operator acting on spatial variables, $B$ is a second-order differential operator that also acts on spatial variables, and $p$ is a nonnegative integer. For these equations, the existence and uniqueness of regular solutions (possessing all generalized derivatives in the Sobolev sense that are involved in the equation) to initial-boundary-value problems and the boundary-value problems nonlocal in the time variable. Some generalizations and refinements of the results obtained are also described.
Mots-clés : composite equation, existence
Keywords: wave operator, initial-boundary-value problem, nonlocal boundary-value problem, regular solution, uniqueness.
@article{INTO_2020_188_a6,
     author = {A. I. Kozhanov and T. P. Plekhanova},
     title = {Boundary-value problems for one class of composite equations with the wave operator in the senior part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - T. P. Plekhanova
TI  - Boundary-value problems for one class of composite equations with the wave operator in the senior part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 76
EP  - 83
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/
LA  - ru
ID  - INTO_2020_188_a6
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A T. P. Plekhanova
%T Boundary-value problems for one class of composite equations with the wave operator in the senior part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 76-83
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/
%G ru
%F INTO_2020_188_a6
A. I. Kozhanov; T. P. Plekhanova. Boundary-value problems for one class of composite equations with the wave operator in the senior part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 76-83. http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/

[1] Korpusov M. O., Razrushenie v neklassicheskikh nelokalnykh uravneniyakh, Librokom, M., 2011

[2] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[3] Larkin N. A., Novikov V. A., Yanenko N. N., Nelineinye uravneniya peremennogo tipa, Nauka, Novosibirsk, 1983 | MR

[4] Maslov V. P., Mosolov P. P., Uravneniya odnomernogo barotropnogo gaza, Nauka, M., 1990 | MR

[5] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007 zbl1179.35007

[6] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[7] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980

[8] Umarov Kh. G., Polugruppy operatorov i tochnye resheniya zadach anizotropnoi filtratsii, Fizmatlit, M., 2009 | MR

[9] Khudaverdiev K., Veliev A., Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Gasioglu, Baku, 2010

[10] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to Highest Order Derivatives, Marsel Dekker Inc., New-York, 2003 MR1831690 | MR

[11] Hayashi N, Kaikina E. I., Naumkin P. I., Shismarev I. A., Asymptotics for Dissipative Nonlinear Equation, Springer–Verlaq, Berlin, 2006 | MR

[12] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[13] Liu S, Triggiani R., “An Inverse Problem for a Third Order PDE Arising in High–Insensity Ultrasound Global Uniqueness and Stability by one Boundary Measurement”, J. of Inverse and Ill–Posed Problems, 21:6 (2014), 825–870 | MR

[14] Pyatkov S. G., Operator Theory Nonclassical Problems, VSP, Utrecht, 2003 | MR