Boundary-value problems for one class of composite equations with the wave operator in the senior part
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 76-83

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the solvability of local and nonlocal boundary-value problems for composite (Sobolev-type) equations $ D^{2p+1}_t\left(D^2_t-\Delta u \right) + Bu = f(x,t), $ where $D^k_t={\partial^k}/{\partial t^k}$, $\Delta$ is the Laplace operator acting on spatial variables, $B$ is a second-order differential operator that also acts on spatial variables, and $p$ is a nonnegative integer. For these equations, the existence and uniqueness of regular solutions (possessing all generalized derivatives in the Sobolev sense that are involved in the equation) to initial-boundary-value problems and the boundary-value problems nonlocal in the time variable. Some generalizations and refinements of the results obtained are also described.
Mots-clés : composite equation, existence
Keywords: wave operator, initial-boundary-value problem, nonlocal boundary-value problem, regular solution, uniqueness.
@article{INTO_2020_188_a6,
     author = {A. I. Kozhanov and T. P. Plekhanova},
     title = {Boundary-value problems for one class of composite equations with the wave operator in the senior part},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {76--83},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/}
}
TY  - JOUR
AU  - A. I. Kozhanov
AU  - T. P. Plekhanova
TI  - Boundary-value problems for one class of composite equations with the wave operator in the senior part
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 76
EP  - 83
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/
LA  - ru
ID  - INTO_2020_188_a6
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%A T. P. Plekhanova
%T Boundary-value problems for one class of composite equations with the wave operator in the senior part
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 76-83
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/
%G ru
%F INTO_2020_188_a6
A. I. Kozhanov; T. P. Plekhanova. Boundary-value problems for one class of composite equations with the wave operator in the senior part. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 76-83. http://geodesic.mathdoc.fr/item/INTO_2020_188_a6/