Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75
Voir la notice de l'article provenant de la source Math-Net.Ru
By using homogeneous functions in a Hilbert space, a wide class of quasiconformal transformations of the sphere is constructed and examined.
Keywords:
homogeneous function, conformally flat metric, quasiconformal mapping, conformally convex function.
Mots-clés : Legendre transform
Mots-clés : Legendre transform
@article{INTO_2020_188_a5,
author = {M. V. Kurkina and V. V. Slavskii},
title = {Homogeneous functions on {Hilbert} spaces and quasiconformal transformations of a sphere},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {70--75},
publisher = {mathdoc},
volume = {188},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/}
}
TY - JOUR AU - M. V. Kurkina AU - V. V. Slavskii TI - Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 70 EP - 75 VL - 188 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/ LA - ru ID - INTO_2020_188_a5 ER -
%0 Journal Article %A M. V. Kurkina %A V. V. Slavskii %T Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 70-75 %V 188 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/ %G ru %F INTO_2020_188_a5
M. V. Kurkina; V. V. Slavskii. Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75. http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/