Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75

Voir la notice de l'article provenant de la source Math-Net.Ru

By using homogeneous functions in a Hilbert space, a wide class of quasiconformal transformations of the sphere is constructed and examined.
Keywords: homogeneous function, conformally flat metric, quasiconformal mapping, conformally convex function.
Mots-clés : Legendre transform
@article{INTO_2020_188_a5,
     author = {M. V. Kurkina and V. V. Slavskii},
     title = {Homogeneous functions on {Hilbert} spaces and quasiconformal transformations of a sphere},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--75},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/}
}
TY  - JOUR
AU  - M. V. Kurkina
AU  - V. V. Slavskii
TI  - Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 70
EP  - 75
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/
LA  - ru
ID  - INTO_2020_188_a5
ER  - 
%0 Journal Article
%A M. V. Kurkina
%A V. V. Slavskii
%T Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 70-75
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/
%G ru
%F INTO_2020_188_a5
M. V. Kurkina; V. V. Slavskii. Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75. http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/