Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

By using homogeneous functions in a Hilbert space, a wide class of quasiconformal transformations of the sphere is constructed and examined.
Keywords: homogeneous function, conformally flat metric, quasiconformal mapping, conformally convex function.
Mots-clés : Legendre transform
@article{INTO_2020_188_a5,
     author = {M. V. Kurkina and V. V. Slavskii},
     title = {Homogeneous functions on {Hilbert} spaces and quasiconformal transformations of a sphere},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {70--75},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/}
}
TY  - JOUR
AU  - M. V. Kurkina
AU  - V. V. Slavskii
TI  - Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 70
EP  - 75
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/
LA  - ru
ID  - INTO_2020_188_a5
ER  - 
%0 Journal Article
%A M. V. Kurkina
%A V. V. Slavskii
%T Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 70-75
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/
%G ru
%F INTO_2020_188_a5
M. V. Kurkina; V. V. Slavskii. Homogeneous functions on Hilbert spaces and quasiconformal transformations of a sphere. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 70-75. http://geodesic.mathdoc.fr/item/INTO_2020_188_a5/

[1] Volnykh E. V., Kutyshkin A. V., Nikonorov Yu. G., “Postroenie $\delta$-odnorodnoi proizvodstvennoi VES-funktsii”, Sib. zh. industr. mat., 10:2 (30) (2007), 31–44 | MR | Zbl

[2] Gelfand I. M., Shapiro Z. Ya., “Odnorodnye funktsii i ikh prilozheniya”, Usp. mat. nauk., 10:3 (1955), 3–70

[3] Kutyshkin A. V., Sokol G. A., “O primenenii proizvodstvennykh funktsii vida VES-funktsiya dlya modelirovaniya funktsionirovaniya ekonomicheskikh sistem”, Vestn. YuUrGU. Ser. Kompyuternye tekhnologii. Upravlenie. Radioelektronika., 17:1 (2007), 49–60

[4] Reshetnyak Yu. G., “Dvumernye mnogoobraziya ogranichennoi krivizny”, Itogi nauki i tekhn. Ser. Sovr. probl. mat. Fundam. napravl., 70 (1989), 7–189 | MR

[5] Slavskii V. V., “Otsenka koeffitsienta kvazikonformnosti oblasti cherez kriviznu kvazigiperbolicheskoi metriki”, Sib. mat. zh., 40:4 (1999), 947–-965 | MR

[6] Kurkina M. V., “The generalized polar transform conformally-flat metrics of positive one-dimensional curvature”, Proc. Int. Conf. «Geometric Analysis» (September 22–28, 2019, Novosibirsk), Novosibirsk State Univ., Novosibirsk, 2019, 89–91

[7] Kurkina M. V., Rodionov E. D., Slavsky V. V., “Conformally convex functions and conformally flat metrics of nonnegative curvature”, Dokl. Math., 91:3 (2015), 287–289 | DOI | MR | Zbl

[8] Kurkina M. V., Rodionov E. D., Slavsky V. V., “Legendre transformation of conformal convex functions”, Proc. Int. Conf. «Geometric Analysis» (September 22–28, 2019, Novosibirsk), Novosibirsk State Univ., Novosibirsk, 2019, 118–120

[9] Rodionov E. D., Slavsky V. V., “Polar transform of conformally flat metrics”, Sib. Adv. Math., 28:2 (2018), 101–114 | DOI | MR

[10] Sabinin L. V., Mirror Geometry of Lie Algebras, Lie Groups, and Homogeneous Spaces, Springer, 2004 | MR