Complex partial differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 54-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schwarz and iterated Dirichlet boundary-value problems are reported on for the polyanalytic operator in certain plane domains having a harmonic Green function. Hybrid polyharmonic Green functions are reviewed upon which open a variety of boundary-value problems for the polyharmonic operator. This topic is far from being complete. The higher the order of the polyharmonic operator the richer is the theory of related hybrid Green functions: they are constructed by continued convoluting harmonic Green, Neumann, Robin functions also incorporating polyharmonic Green–Almansi functions.
Keywords: polyanalytic operator, Cauchy–Schwarz–Pompeiu representation, Green function, Schwarz boundary-value problem, Dirichlet boundary-value problem, ring domain, Green–Almansi function, polyharmonic hybrid Green function, polyharmonic boundary-value problem, Riquier boundary-value problem.
Mots-clés : admissible domain
@article{INTO_2020_188_a4,
     author = {Aksoy and H. Begehr and A. \c{C}elebi and B. Shupeyeva},
     title = {Complex partial differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {54--69},
     publisher = {mathdoc},
     volume = {188},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a4/}
}
TY  - JOUR
AU  - Aksoy
AU  - H. Begehr
AU  - A. Çelebi
AU  - B. Shupeyeva
TI  - Complex partial differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 54
EP  - 69
VL  - 188
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_188_a4/
LA  - ru
ID  - INTO_2020_188_a4
ER  - 
%0 Journal Article
%A Aksoy
%A H. Begehr
%A A. Çelebi
%A B. Shupeyeva
%T Complex partial differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 54-69
%V 188
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_188_a4/
%G ru
%F INTO_2020_188_a4
Aksoy; H. Begehr; A. Çelebi; B. Shupeyeva. Complex partial differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 54-69. http://geodesic.mathdoc.fr/item/INTO_2020_188_a4/

[1] Aksoy Ü., Schwarz problem for complex partial differential equations, Ph.D. thesis., Ankara, 2006

[2] Aksoy Ü., Begehr H., Çelebi A. O., “A. V. Bitsadze's observation on bianalytic functions and the Schwarz problem”, Complex Var. Elliptic Equ., 64:8 (2019), 1257–1274 | DOI | MR | Zbl

[3] Aksoy Ü., Begehr H., Çelebi A. O., A. V. Bitsadze's observation on bianalytic functions and the Schwarz problem revisited, FU Berlin, 2019 | MR

[4] Aksoy Ü., Celebi A. O., “A survey on the boundary-value problems for complex partial differential equations”, Adv. Dyn. Syst. Appl., 5 (2010), 133–158 | MR

[5] Aksoy Ü., Celebi A. O., “Mixed boundary-value problems for higher-order complex partial differential equations”, Analysis., 30 (2010), 157–169 | DOI | MR | Zbl

[6] Almansi E., “Sull'integrazione dell'equazione differenziale $\Delta^{2n}=0$”, Ann. Mat., 3:2 (1899), 1–51 | Zbl

[7] Begehr H., “Iterated integral operators in Clifford analysis”, J. Anal. Appl., 18 (1999), 361–377 | MR | Zbl

[8] Begehr H., “Orthogonal decompositions of the function space $L_2(\overline{D};\mathbb{C})$”, J. Reine Angew. Math., 549 (2002), 191–219 | MR | Zbl

[9] Begehr H., “Boundary-value problems in complex analysis, I, II”, Bol. Asoc. Mat. Venez., 12 (2005), 65–85; 217–250 | MR | Zbl

[10] Begehr H., “A particular polyharmonic Dirichlet problem”, Complex Analysis and Potential Theory, World Scientific, Hackensack, New Jersey, 2007, 84–115 | DOI | MR | Zbl

[11] Begehr H., “Iterated polyharmonic Green functions for plane domains”, Acta Math. Vietnam., 36 (2011), 169–181 | MR | Zbl

[12] Begehr H., Gaertner E., “A Dirichlet problem for the inhomogeneous polyharmonic equation in the upper half plane”, Georg. Math. J., 14 (2007), 33–52 | DOI | MR | Zbl

[13] Begehr H., Gackstater F., Krausz A., “Integral representations in octonionic analysis”, Proc. 10. Int. Conf. Complex Analysis, eds. Kajiwara J. et al., Busan, Korea, 2002, 1–7 | MR

[14] Begehr H., Hile G. N., “A hierarchy of integral operators”, Rocky Mountain J. Math., 27 (1997), 669–706 | DOI | MR | Zbl

[15] Begehr H., Kumar A., “Boundary-value problems for the inhomogeneous polyanalytic equation, I”, Analysis., 25 (2005), 55–71 | DOI | MR | Zbl

[16] Begehr H., Otto H., Zhang Z. X., “Differential operators, their fundamental solutions, and related integral representations in Clifford analysis”, Complex Var. Ell. Equ., 51 (2006), 407–427 | DOI | MR | Zbl

[17] Begehr H., Schmersau D., “The Schwarz problem for polyanalytic functions”, J. Anal. Appl., 24 (2005), 341–351 | MR | Zbl

[18] Begehr H., Shupeyeva B., Polyanalytic boundary-value problems for plane domains with harmonic Green function, FU Berlin, 2019

[19] Begehr H., Vaitekhovich T., “Iterated Dirichlet problem for the higher-order Poisson equation”, Le Matematiche., 63:1 (2008), 139–154 | MR | Zbl

[20] Begehr H., Vaitekhovich T., “Modified harmonic Robin function”, Complex Var. Ell. Equ., 58 (2013), 483–496 | DOI | MR | Zbl

[21] Begehr H., Vanegas C. J., “Iterated Neumann problem for the higher-order Poisson equation”, Math. Nachr., 279 (2006), 38–57 | DOI | MR | Zbl

[22] Begehr H., Vu T. N. H., Zhang Z. X., “Polyharmonic Dirichlet problems”, Proc. Steklov Inst. Math., 255 (2006), 13–34 | DOI | MR | Zbl

[23] Burgumbayeva S., Boundary-value problems for triharmonic functions in the unit disc, Ph.D. thesis., FU Berlin, 2009

[24] Chaudhary A., Complex boundary-value problems in unbounded domains, Ph.D. thesis., Univ. of Delhi, 2009 | Zbl

[25] Di Teodoro A. N., Vanegas C. J., “Dirichlet–Neumann–Schwarz problem for the nonhomogeneous trianalytic equation”, Bol. Asoc. Mat. Venez., 19:2 (2012), 113–128 | MR | Zbl

[26] Du Z., Boundary-value problems for higher order complex partial differential equations, Ph.D. thesis., FU Berlin, 2008

[27] Emek S., Iterated Robin problem for the higher-order Poisson equation, FU Berlin, 2019 | MR

[28] Gaertner E., Basic complex boundary-value problems in the upper half plane, Ph.D. thesis., FU Berlin, 2006

[29] Krausz A., Integral representations with Green functions of higher order in domains and polydomains, Ph.D. thesis., FU Berlin, 2005

[30] Kumar A., Prakash R., “Mixed boundary-value problem for inhomogeneous polyanalytic harmonic equation”, Proc. 5th Int. ISAAC Congr. (Catania, Italy, July 25–-30, 2005), ed. Begehr H. G. W. et al., World Scientific, Hackensack, NJ, 2009, 1149–1161 | Zbl

[31] Mohammed A., Tuffaha A., “On boundary control of the Poisson equation with the third boundary condition”, J. Math. Anal. Appl., 459:1 (2018), 217–235 | DOI | MR | Zbl

[32] Nemchenko M., Explicit construction of Green function for a polyharmonic equation in the case of an even-dimensional space, Ph.D. thesis., Al-Farabi Kazakh National University, Almaty, 2009 (in Russian)

[33] Otto H. A. M., Cauchy–Pompeiu integral representations in Clifford analysis, Ph.D. thesis., FU Berlin, 2006 | MR

[34] Prakash R., Boundary-value problems in complex analysis, Ph.D. thesis., Univ. of Delhi, 2006

[35] Shupeyeva B., Some basic boundary-value problems for complex partial differential equations in quarter ring and half hexagon, Ph.D. thesis., FU Berlin, 2013 | MR

[36] Vaitsiakhovich T., Boundary-value problems for complex partial differential equations in a ring domain, Ph.D. thesis., FU Berlin, 2008

[37] Vekua I. N., Generalized Analytic Functions, Pergamon Press, Oxford, 1962 | MR | Zbl

[38] Vekua I. N., New Methods for Solving Elliptic Equations, Wiley, Amsterdam–North-Holland–New York, 1967 | MR | Zbl

[39] Vu T. N. H., Integral representations in quaternionic analysis related to the Helmholtz operator, Ph.D. thesis., FU Berlin, 2005 | MR

[40] Wang Y., Boundary-value problems for complex partial differential equations in fan-shaped domains, Ph.D. thesis., FU Berlin, 2011 | MR