Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_188_a0, author = {A. P. Soldatov}, title = {On the {Schwarz} problem for the {Moisil--Teodoresco} system}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {3--13}, publisher = {mathdoc}, volume = {188}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_188_a0/} }
TY - JOUR AU - A. P. Soldatov TI - On the Schwarz problem for the Moisil--Teodoresco system JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 3 EP - 13 VL - 188 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_188_a0/ LA - ru ID - INTO_2020_188_a0 ER -
A. P. Soldatov. On the Schwarz problem for the Moisil--Teodoresco system. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Mathematical Modeling, Tome 188 (2020), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2020_188_a0/
[1] Bitsadze A. V., “Prostranstvennyi analog integrala tipa Koshi i nekotorye ego prilozheniya”, Dokl. AN SSSR., 93:3 (1953), 389–392 | Zbl
[2] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966
[3] Bott R., Tu L. V., Differentsialnye formy v algebraicheskoi topologii, Nauka, M., 1989
[4] Polunin V. A., Soldatov A. P., “Zadacha Rimana—Gilberta dlya sistemy Moisila—Teodoresku v konechnoi oblasti”, Neklassicheskie uravneniya matematicheskoi fiziki, IM SO RAN, Novosibirsk, 2010, 192–201
[5] Polunin V. A., Soldatov A. P., “O sopryazhennoi zadache Rimana—Gilberta dlya sistemy Moisila—Teodoresku”, Nauch. ved. Belgorod. un-ta., 5:22 (2011), 106–111
[6] Polunin V. A., Soldatov A. P., “Trekhmernyi analog integrala tipa Koshi”, Differ. uravn., 47:5 (2011), 366–375 | MR
[7] Soldatov A. P., “Singulyarnye integralnye operatory i ellipticheskie kraevye zadachi”, Sovr. mat. Fundam. napr., 63 (2017), 1–189
[8] Khatcher A., Algebraicheskaya topologiya, Izd-vo MTsNMO, M., 2011
[9] Grigor'ev Yu., “Quaternionic functions and their applications in a viscous fluid flow”, Complex Anal. Oper. Theory., 12 (2018), 491–508 | DOI | MR | Zbl
[10] Grigor'ev Yu., Gürlebeck K, Legatiuk D., “Quaternionic formulation of a Cauchy problem for the Lamé equation”, AIP Conf. Proc., 2017, 280007
[11] Gürlebeck K., Habetha K., Sprossig W., Holomorphic Functions in the Plane and $n$-dimensional Space, Birkhäuser, Basel–Boston–Berlin, 2008 | MR | Zbl
[12] Moisil G. C., Theodorescu N., “Fonction holomophic dans l'espace”, Bul. Soc. St. Cluj., 6 (1931), 177–194 | MR | Zbl
[13] Moisil G. C., Theodorescu N., “Fonctions holomorphes dans l’space”, Math. Cluj., 5 (1931), 142–159 | MR
[14] Stein E. M., Weiss G., “Generilization of the Cauchy–Riemann equation and representations of the rotation group”, Am. J. Math., 90 (1968), 163–196 | DOI | MR | Zbl
[15] Shapiro M., Vasilevski N., “Quaternionic $\Psi$-hyperholomorphic functions, singular integral operators, and boundary-value problems, I. $\Psi$-Hyperholomorphic function theory”, Compl. Var. Ellipt. Equ., 27:1 (1995), 17–46 | MR | Zbl
[16] Shapiro M., Vasilevski N., “Quaternionic $\Psi$-hyperholomorphic functions, singular integral operators, and boundary-value problems, II. Algebras of singular integral operators and Riemann-type boundary-value problems”, Compl. Var. Ellipt. Equ., 27:1 (1995), 67–96 | MR | Zbl