Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a9, author = {M. I. kuptsov and V. A. Minaev and M. S. Maskina}, title = {Method of {Lyapunov} functions in the problem of stability of integral manifolds of a system of ordinary differential equations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {74--82}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/} }
TY - JOUR AU - M. I. kuptsov AU - V. A. Minaev AU - M. S. Maskina TI - Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 74 EP - 82 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/ LA - ru ID - INTO_2020_186_a9 ER -
%0 Journal Article %A M. I. kuptsov %A V. A. Minaev %A M. S. Maskina %T Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 74-82 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/ %G ru %F INTO_2020_186_a9
M. I. kuptsov; V. A. Minaev; M. S. Maskina. Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 74-82. http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/