Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 74-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of stability of nonzero integral manifolds of a nonlinear finite-dimensional system of ordinary differential equations whose right-hand side is a periodic vector-valued function of the independent variable containing a parameter. We assume that the system has a trivial integral manifold for all values of the parameter and the corresponding linear subsystem does not possess the property of exponential dichotomy. The aim of this work is to find sufficient conditions for stability, instability, and asymptotic stability of a local nonzero integral manifold. For this purpose, we use the method of Lyapunov functions modified to the problem considered and singularities of the right-hand sides of the system.
Keywords: method of Lyapunov functions, stability, asymptotic stability, instability, integral manifold, system of ordinary differential equations.
@article{INTO_2020_186_a9,
     author = {M. I. kuptsov and V. A. Minaev and M. S. Maskina},
     title = {Method of {Lyapunov} functions in the problem of stability of integral manifolds of a system of ordinary differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--82},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/}
}
TY  - JOUR
AU  - M. I. kuptsov
AU  - V. A. Minaev
AU  - M. S. Maskina
TI  - Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 74
EP  - 82
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/
LA  - ru
ID  - INTO_2020_186_a9
ER  - 
%0 Journal Article
%A M. I. kuptsov
%A V. A. Minaev
%A M. S. Maskina
%T Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 74-82
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/
%G ru
%F INTO_2020_186_a9
M. I. kuptsov; V. A. Minaev; M. S. Maskina. Method of Lyapunov functions in the problem of stability of integral manifolds of a system of ordinary differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 74-82. http://geodesic.mathdoc.fr/item/INTO_2020_186_a9/

[1] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991

[2] Bogolyubov N. N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo AN USSR, Lvov, 1945 | MR

[3] Volkov D. Yu., “Bifurkatsiya invariantnykh torov iz sostoyaniya ravnovesiya pri nalichii nulevykh kharakteristicheskikh chisel”, Vestn. Leningr. un-ta., 1:2 (1988), 102–103

[4] Grebennikov E. A., Ryabov Yu. A., Konstruktivnye metody analiza nelineinykh sistem, Nauka, M., 1979 | MR

[5] Kulikov D. A., Sekatskaya A. V., “O vliyanii geometricheskikh kharakteristik oblasti na strukturu nanorelefa”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 28:3 (2018), 293–304 | MR | Zbl

[6] Kuptsov M. I., “Lokalnoe integralnoe mnogoobrazie sistem differentsialnykh uravnenii, zavisyaschikh ot parametra”, Differ. uravn., 35:11 (1999), 1579–1580

[7] Kuptsov M. I., “Suschestvovanie integralnogo mnogoobraziya sistemy differentsialnykh uravnenii”, Differ. uravn., 34:6 (1998), 855

[8] Kuptsov M. I., Suschestvovanie integralnykh mnogoobrazii i periodicheskikh reshenii sistemy obyknovennykh differentsialnykh uravnenii, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Udmurt. gos. un-t, Izhevsk, 1997

[9] Kuptsov M. I., Minaev V. A., Faddeev A. O., Yablochnikov S. L., “K voprosu ob ustoichivosti integralnogo mnogoobraziya sistemy differentsialnykh uravnenii v kriticheskom sluchae”, Tez. dokl. Mezhdunar. konf. «Geometricheskie metody v teorii upravleniya i matematicheskoi fizike» (25-28 sentyabrya 2018 g., Ryazan), RGU, Ryazan, 2018, 16–17

[10] Kuptsov M. I., Terekhin M. T., Tenyaev V. V., “K probleme suschestvovaniya integralnykh mnogoobrazii sistemy differentsialnykh uravnenii, ne razreshennykh otnositelno proizvodnykh”, Zh. Srednevolzh. mat. o-va., 19:2 (2017), 76–84 | MR

[11] Kurbanshoev S. Z., Nusairiev M. A., “Postroenie optimalnykh integralnykh mnogoobrazii dlya nelineinykh differentsialnykh uravnenii”, Dokl. AN Resp. Tadzhikistan., 57:11–12 (2014), 807–812

[12] Mitropolskii Yu. A., Grebennikov E. A., Metod usredneniya v issledovaniyakh rezonansnykh sistem, Nauka, M., 1992

[13] Mitropolskii Yu. A., Lykova O. B., Integralnye mnogoobraziya v nelineinoi mekhanike, Nauka, M., 1973

[14] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, Librokom, M., 2010

[15] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya po otnosheniyu k chasti peremennykh, Nauka, M., 1987

[16] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii. Invariantnye tory, Nauka, M., 1987 | MR

[17] Schetinina E. V., Integralnye mnogoobraziya i zatyagivanie poteri ustoichivosti, Diss. na soisk. uch. step. kand. fiz.-mat. nauk, Voronezh. gos. un-t, Voronezh, 2005

[18] Kuptsov M. I., “Local integral manifold of a system of differential equations”, Differ. Equ., 34:7 (1998), 1005–1007 | MR | Zbl

[19] Kuptsov M. I., Minaev V. A., “Stability integral manifold of the differential equations system in critical case”, J. Phys. Conf. Ser., 973 (2018), 012055 | DOI

[20] Sobolev V., “Slow integral manifolds and control problems in critical and twice critical cases”, J. Phys. Conf. Ser., 727 (2016), 012017 | DOI | MR

[21] Vasilina G. K., Tleubergenov M. I., “On the optimal stabilization of an integral manifold”, J. Math. Sci., 229:4 (2018), 390–402 | DOI | MR | Zbl

[22] Yablochnikov S. L., Yablochnikova I. O., Vidov S. V., Kuptsov M. I., Olisaeva A. V., “The aspects of modeling information processes realized in complex telecommunication systems”, Proc. Conf. “Wave Electronics and Its Application in Information and Telecommunication Systems” (November 26-30, 2018, Saint Petersburg), IEEE, 2018, 1–5