On local bifurcations of spatially inhomogeneous solutions for one functional-differential equation
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, we study a nonlocal erosion equation, which simulates the process of nanorelief formation. For a periodic boundary-value problem for the partial functional differential equation, we examine local bifurcations in the cases where homogeneous equilibrium states change their stability. We prove that in the problem considered, subcritical bifurcations occur.
Keywords: functional differential equation, boundary-value problem, stability.
Mots-clés : local bifurcation
@article{INTO_2020_186_a8,
     author = {D. A. Kulikov},
     title = {On local bifurcations of spatially inhomogeneous solutions for one functional-differential equation},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a8/}
}
TY  - JOUR
AU  - D. A. Kulikov
TI  - On local bifurcations of spatially inhomogeneous solutions for one functional-differential equation
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 67
EP  - 73
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a8/
LA  - ru
ID  - INTO_2020_186_a8
ER  - 
%0 Journal Article
%A D. A. Kulikov
%T On local bifurcations of spatially inhomogeneous solutions for one functional-differential equation
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 67-73
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a8/
%G ru
%F INTO_2020_186_a8
D. A. Kulikov. On local bifurcations of spatially inhomogeneous solutions for one functional-differential equation. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 67-73. http://geodesic.mathdoc.fr/item/INTO_2020_186_a8/

[13] Kolesov A. Yu., Kulikov A. N., Rozov N. Kh., “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie tora pri vozmuscheniyakh”, Differ. uravn., 39:6 (2003), 738–753 | MR | Zbl

[14] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[15] Kulikov A. N., Inertsialnye mnogoobraziya nelineinykh avtonomnykh differentsialnykh uravnenii v gilbertovom prostranstve, Preprint No 85 In-ta prikl. mat. im. M. V. Keldysha, M., 1991

[16] Kulikov A. N., Kulikov D. A., “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. mat. mat. fiz., 52:5 (2012), 930–945 | MR | Zbl

[17] Kulikov A. N.,Kulikov D. A., “Mekhanizm formirovaniya volnovykh dissipativnykh struktur v odnoi iz zadach nanotekhnologii”, Vestn. RAEN., 13:4 (2013), 23–31

[18] Kulikov A. N.,Kulikov D. A., “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Mat. model., 28:3 (2016), 33–50 | MR | Zbl

[19] Marsden Dzh., Mak-Kraken M., Bifurkatsii rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980

[20] Razgulin A. V., “Ob avtokolebaniyakh v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. mat. mat. fiz., 33:1 (1993), 69–80 | MR | Zbl

[21] Rudyi A. S., Bachurin V. I., “Prostranstvenno nelokalnaya model erozii poverkhnosti ionnoi bombardirovkoi”, Izv. RAN. Ser. fiz., 72:5 (2008), 624–629

[22] Rudyi A. S., Kulikov A. N., Metlitskaya A. V., “Samoorganizatsiya nanostruktur v ramkakh prostranstvenno-nelokalnoi modeli erozii poverkhnosti kremniya ionnoi bombardirovkoi”, Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, Indigo, Yaroslavl, 2014, 53–55

[23] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differ. uravn., 34:10 (1998), 1394–1401 | MR | Zbl

[24] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. mat. o-va., 10 (1961), 297–350

[25] Bradley R. M., Harper J. M. E., “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Techn. A., 6 (1988), 2390–2395 | DOI

[26] Kulikov D. A., “Spatially ingomogeneous dissipative structures in a periodic boundary-value problem for a nonlocal erosion equation”, J. Math. Sci., 205:6 (2015), 791–805 | DOI | MR | Zbl

[27] Rudyi A. S., Kulikov A. N., Kulikov D. A., Metlitskaya A. V., “High-mode wave relief in a spatially nonlocal erosion model”, Russ. Microelectron., 43:4 (2014), 277–283 | DOI