Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a6, author = {A. N. Konenkov}, title = {The first boundary-value problem for the {Fokker--Planck} equation with one spatial variable}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {52--56}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a6/} }
TY - JOUR AU - A. N. Konenkov TI - The first boundary-value problem for the Fokker--Planck equation with one spatial variable JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 52 EP - 56 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a6/ LA - ru ID - INTO_2020_186_a6 ER -
%0 Journal Article %A A. N. Konenkov %T The first boundary-value problem for the Fokker--Planck equation with one spatial variable %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 52-56 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a6/ %G ru %F INTO_2020_186_a6
A. N. Konenkov. The first boundary-value problem for the Fokker--Planck equation with one spatial variable. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 52-56. http://geodesic.mathdoc.fr/item/INTO_2020_186_a6/
[1] Ladyzhenskaya O. A., Solonnikov S. D., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1968 | MR
[2] Porper F. O., Eidelman S. D., “Dvustoronnie otsenki fundamentalnykh reshenii parabolicheskikh uravnenii vtorogo poryadka i nekotorye ikh prilozheniya”, Usp. mat. nauk., 39:3 (237) (1984), 107-–156 | MR | Zbl
[3] Risken H., The Fokker–Planck Equation: Methods of Solution and Applications, Springer-Verlag, Berlin, 1984 | MR | Zbl