Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a5, author = {A. S. Zapov}, title = {Nonlinear panel flutter. {Bolotin's} problem in the presence of viscous friction}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {45--51}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a5/} }
TY - JOUR AU - A. S. Zapov TI - Nonlinear panel flutter. Bolotin's problem in the presence of viscous friction JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 45 EP - 51 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a5/ LA - ru ID - INTO_2020_186_a5 ER -
%0 Journal Article %A A. S. Zapov %T Nonlinear panel flutter. Bolotin's problem in the presence of viscous friction %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 45-51 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a5/ %G ru %F INTO_2020_186_a5
A. S. Zapov. Nonlinear panel flutter. Bolotin's problem in the presence of viscous friction. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 45-51. http://geodesic.mathdoc.fr/item/INTO_2020_186_a5/
[1] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Nauka, M., 1961
[2] Zapov A. S., “Ob odnoi matematicheskoi modeli v teorii uprugoi ustoichivosti”, Vestn. Udmurt. un-ta. Mat. Mekh. Komp. nauki., 1:29 (2019), 29–39 | MR | Zbl
[3] Kulikov A. N., “Attraktory odnoi nelineinoi kraevoi zadachi, vstrechayuscheisya v teorii aerouprugosti”, Differ. uravn., 3:37 (2001), 397–401 | Zbl
[4] Kulikov A. N., “Bifurkatsiya avtokolebanii plastinki pri malom dempfirovanii v sverkhzvukovom potoke gaza”, Prikl. mat. mekh., 2:73 (2009), 271–281 | Zbl
[5] Kulikov A. N., “O vozmozhnosti realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v dvukh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 1:47 (2011), 296–298
[6] Kulikov A. N., “O realizatsii stsenariya Landau—Khopfa perekhoda k turbulentnosti v nekotorykh zadachakh teorii uprugoi ustoichivosti”, Differ. uravn., 9:48 (2012), 1278–1291 | Zbl
[7] Kulikov A. N., Nekotorye bifurkatsionnye zadachi teorii uprugoi ustoichivosti i matematicheskoi fiziki, Dissertatsiya na soiskanie uch. step. dokt. fiz.-mat. nauk, N. Novgorod, 2018
[8] Tompson Dzh. M. T., Neustoichivosti i katastrofy v nauke i tekhnike, Mir, M., 1985 | MR
[9] Yakubov S. Ya., “Razreshimost zadachi Koshi dlya abstraktnykh kvazilineinykh giperbolicheskikh uravnenii vtorogo poryadka i ikh prilozheniya”, Tr. Mosk. mat. o-va., 23 (1970), 37–60 | Zbl
[10] Paidoussis M. P., Issid N. T., “Dynamic stability of pipes conveying fluid”, J. Sound Vibr., 3:33 (1974), 267–294 | DOI