Interaction of bonded plates in a uniform temperature field
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 32-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

An equilibrium thermoelastic state of two plates connected by a thin layer is examined. The problem is reduced to a system of six second-order differential equations. The temperature deformations of a bimetallic plate clamped at one edge and free at the other are considered. In the case of zero thickness of the interaction layer, the law of change of the conjugation line and the distribution of stresses along this line are obtained. In a uniform state (pure bend), the curvature of the mating line becomes constant. For zero Poisson ratio, the temperature dependence of the curvature is obtained.
Keywords: bimetallic plate, uniform temperature effect.
@article{INTO_2020_186_a3,
     author = {V. V. Glagolev and L. V. Glagolev and A. A. Markin},
     title = {Interaction of bonded plates in a uniform temperature field},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {32--37},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a3/}
}
TY  - JOUR
AU  - V. V. Glagolev
AU  - L. V. Glagolev
AU  - A. A. Markin
TI  - Interaction of bonded plates in a uniform temperature field
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 32
EP  - 37
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a3/
LA  - ru
ID  - INTO_2020_186_a3
ER  - 
%0 Journal Article
%A V. V. Glagolev
%A L. V. Glagolev
%A A. A. Markin
%T Interaction of bonded plates in a uniform temperature field
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 32-37
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a3/
%G ru
%F INTO_2020_186_a3
V. V. Glagolev; L. V. Glagolev; A. A. Markin. Interaction of bonded plates in a uniform temperature field. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 32-37. http://geodesic.mathdoc.fr/item/INTO_2020_186_a3/

[3] Glagolev V. V., Markin A. A., Pashinov S. V., “Bimetallicheskaya plastina v odnorodnom temperaturnom pole”, Mekh. kompoz. mat. konstr., 23:3 (2017), 331–343

[4] Timoshenko S. P., Voinovskii-Kriger S., Plastiny i obolochki, Fizmatgiz, M., 1963

[5] Khan Kh., Teoriya uprugosti: Osnovy lineinoi teorii ee primeneniya, Mir, M., 1988

[6] Clyne T. W., “Residual stresses in surface coatings and their effects on interfacial debonding”, Key Eng. Mat., 116–117 (1996), 307–330

[7] Glagolev V. V., Glagolev L. V., Markin A. A., “Stress-strain state of elastoplastic bodies with crack”, Acta Mech. Solid. Sinica., 28:4 (2015), 375–383 | DOI

[8] Glagolev V. V., Markin A. A., “Fracture models for solid bodies, based on a linear scale parameter”, Int. J. Solids Struct., 158 (2019), 141–149 | DOI