Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_186_a2, author = {E. N. Getmanova and S. V. Kornev}, title = {Some applications of the theory of random degree of coincidence in periodic problems for functional differential inclusions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {21--31}, publisher = {mathdoc}, volume = {186}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a2/} }
TY - JOUR AU - E. N. Getmanova AU - S. V. Kornev TI - Some applications of the theory of random degree of coincidence in periodic problems for functional differential inclusions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 21 EP - 31 VL - 186 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_186_a2/ LA - ru ID - INTO_2020_186_a2 ER -
%0 Journal Article %A E. N. Getmanova %A S. V. Kornev %T Some applications of the theory of random degree of coincidence in periodic problems for functional differential inclusions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 21-31 %V 186 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_186_a2/ %G ru %F INTO_2020_186_a2
E. N. Getmanova; S. V. Kornev. Some applications of the theory of random degree of coincidence in periodic problems for functional differential inclusions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 21-31. http://geodesic.mathdoc.fr/item/INTO_2020_186_a2/
[1] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 169 (1985), 194–252 | MR | Zbl
[2] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR
[3] Getmanova E. N., “O stepeni sovpadeniya dlya nekotorykh klassov sluchainykh multiotobrazhenii i lineinykh fredgolmovykh operatorov”, Materialy Voronezhskoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXX» (3–9 maya 2019 g.), Voronezh, 2019
[4] Kornev S. V., “Negladkie integralnye napravlyayuschie funktsii v zadachakh o vynuzhdennykh kolebaniyakh”, Avtomat. telemekh., 9 (2015), 31–43 | Zbl
[5] Kornev S. V., “Mnogolistnye napravlyayuschie funktsii v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh vklyuchenii s nevypukloi pravoi chastyu”, Izv. vuzov. Mat., 11 (2016), 14–26 | Zbl
[6] Kornev S. V., “Napravlyayuschie funktsii na zadannom mnozhestve v zadache o suschestvovanii periodicheskikh reshenii differentsialnykh vklyuchenii s nevypukloi pravoi chastyu”, Vestn. Voronezh. gos. un-ta. Ser. Fiz. Mat., 2 (2016), 107–122 | Zbl
[7] Kornev S. V., “Metod negladkikh integralnykh napravlyayuschikh funktsii v zadache o suschestvovanii periodicheskikh reshenii vklyuchenii s kauzalnymi operatorami”, Vestn. Yuzhno-Uralsk. gos. un-ta. Ser. Mat. model. Programmir., 9:2 (2016), 46–59 | MR | Zbl
[8] Kornev S. V., Obukhovskii V. V., “Ob integralnykh napravlyayuschikh funktsiyakh dlya funktsionalno-differentsialnykh vklyuchenii”, Topologicheskie metody nelineinogo analiza, Voronezh, 2000, 87–107
[9] Kornev S. V., Obukhovskii V. V., “O nekotorykh variantakh teorii topologicheskoi stepeni dlya vypukloznachnykh multiotobrazhenii”, Trudy matematicheskogo fakulteta VGU, Voronezh. gos. un-t, Voronezh, 2004, 56–74
[10] Kornev S. V., Obukhovskii V. V., “O lokalizatsii metoda napravlyayuschikh funktsii v zadache o periodicheskikh resheniyakh differentsialnykh vklyuchenii”, Izv. vuzov. Mat., 5 (2009), 23–32 | Zbl
[11] Kornev S. V., Obukhovskii V. V., “Integralnye napravlyayuschie funktsii i periodicheskie resheniya vklyuchenii s kauzalnymi operatorami”, Vestn. Tambov. un-ta. Ser. Estestv. tekhn. nauki., 21:1 (2016), 55–65
[12] Kornev S. V., Obukhovskii V. V., Dzekka P., “Metod obobschennoi integralnoi napravlyayuschei funktsii v zadache o suschestvovanii periodicheskikh reshenii funktsionalno-differentsialnykh vklyuchenii”, Differ. uravn., 52:10 (2016), 1335–1344 | Zbl
[13] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR
[14] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975
[15] Krasnoselskii M. A., Perov A. I., “Ob odnom printsipe suschestvovaniya ogranichennykh, periodicheskikh i pochti-periodicheskikh reshenii u sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR., 123:2 (1958), 235–238
[16] Krasnoselskii M. A., Perov A. I., Povolotskii A. I., Zabreiko P. P., Vektornye polya na ploskosti, Fizmatgiz, M., 1963 | MR
[17] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR
[18] Andres J., Gorniewicz L., “Random topological degree and random differential inclusions”, Topol. Meth. Nonlin. Anal., 40 (2012), 337–358 | MR | Zbl
[19] Arutyunov A. V., Obukhovskii V., Convex and Set-Valued Analysis. Selected Topics, de Gruyter, Berlin–Boston, 2017 | MR | Zbl
[20] Deimling K., Multivalued Differential Equations, de Gruyter, Berlin–New York, 1992 | MR | Zbl
[21] Fonda A., “Guiding functions and periodic solutions to functional differential equations”, Proc. Am. Math. Soc., 99:1 (1987), 79–85 | MR | Zbl
[22] Gliklikh Yu., Kornev S., Obukhovskii V., “Guiding potentials and periodic solutions of differential equations on manifolds”, Glob. Stochast. Anal., 6:1 (2019), 1–7
[23] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Springer-Verlag, Berlin, 2006 | MR | Zbl
[24] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin–New York, 2001 | MR | Zbl
[25] Kisielewicz M., Differential Inclusions and Optimal Control, PWN, Dordrecht, 1991 | MR | Zbl
[26] Kornev S., Obukhovskii V., “On some developments of the method of integral guiding functions”, Funct. Differ. Equ., 12:3–4 (2005), 303–310 | MR | Zbl
[27] Kornev S. V., Liou Y. C., Loi N. V., Obukhovskii V. V., “On periodic solutions of random differential inclusions”, Appl. Anal. Optim., 1:2 (2017), 245–258 | MR
[28] Kornev S. V., Loi N. V., Obukhovskii V. V., Wen C. F., “Random nonsmooth integral guiding functions and asymptotic behavior of trajectories for random differential inclusions”, J. Nonlin. Convex Anal., 19:3 (2018), 493–500 | MR | Zbl
[29] Kornev S., Obukhovskii V., Zecca P., “Guiding functions and periodic solutions for inclusions with causal multioperators”, Appl. Anal., 96:3 (2017), 418–428 | DOI | MR | Zbl
[30] Kornev S., Obukhovskii V., Zecca P., “On multivalent guiding functions method in the periodic problem for random differential equations”, J. Dynam. Differ. Equ., 31:2 (2019), 1017–1028 | DOI | MR | Zbl
[31] Mawhin J. L., Topological Degree Methods in Nonlinear Boundary Value Problems, Am. Math. Soc., Providence, Rhode Island, 1979 | MR | Zbl
[32] Mawhin J., Thompson H. B., “Periodic or bounded solutions of Carathéodory systems of ordinary differential equations”, J. Dynam. Differ. Equ., 15:2–3 (2003), 327–334 | DOI | MR | Zbl
[33] Mawhin J., Ward J. R. Jr., “Guiding-like functions for periodic or bounded solutions of ordinary differential equations”, Discr. Contin. Dynam. Syst., 8:1 (2002), 39–54 | DOI | MR | Zbl
[34] Obukhovskii V., Zecca P., Loi N. V., Kornev S., Method of Guiding Functions in Problems of Nonlinear Analysis, Springer-Verlag, Berlin, 2013 | MR | Zbl
[35] Pruszko T., “A coincidence degree for $L$-compact convex-valued mappings and its application to the Picard problem for orientor fields”, Bull. Acad. Pol. Sci. Sér. Math., 27:11–12 (1979), 895–902 | MR | Zbl
[36] Pruszko T., “Topological degree methods in multi-valued boundary value problems”, Nonlin. Anal. Theory Meth. Appl., 5:9 (1981), 959–970 | DOI | MR
[37] Rachinskii D. I., “Multivalent guiding functions in forced oscillation problems”, Nonlin. Anal. Theory Meth. Appl., 26 (1996), 631–639 | DOI | MR
[38] Tarafdar E., Teo S. K., “On the existence of solutions of the equation $Lx\in Nx$ and a coincidence degree theory”, J. Austr. Math. Soc., A. 28:2 (1979), 139–173 | DOI | MR | Zbl
[39] Tarafdar E., Watson P., Yuan X. Z., “Random coincidence degree theory with applications to random differential inclusions”, Comment. Math. Univ. Carol., 1996, 725–748 | MR | Zbl