Curvature of cycles of phase systems with multistability
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 83-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a system of differential equations describing a mathematical model of a phase-locked loop with a delay. We introduce the concept of the curvature of a cycle, which is applied to analyzing the proximity of cycles of nonphase and phase systems.
Keywords: system of differential equations, oscillatory cycle, phase system, curvature of cycle, rotation of a vector field.
@article{INTO_2020_186_a10,
     author = {S. S. Mamonov and I. V. Ionova and A. O. Harlamova},
     title = {Curvature of cycles of phase systems with multistability},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {83--90},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a10/}
}
TY  - JOUR
AU  - S. S. Mamonov
AU  - I. V. Ionova
AU  - A. O. Harlamova
TI  - Curvature of cycles of phase systems with multistability
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 83
EP  - 90
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a10/
LA  - ru
ID  - INTO_2020_186_a10
ER  - 
%0 Journal Article
%A S. S. Mamonov
%A I. V. Ionova
%A A. O. Harlamova
%T Curvature of cycles of phase systems with multistability
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 83-90
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a10/
%G ru
%F INTO_2020_186_a10
S. S. Mamonov; I. V. Ionova; A. O. Harlamova. Curvature of cycles of phase systems with multistability. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 83-90. http://geodesic.mathdoc.fr/item/INTO_2020_186_a10/

[1] Abramov V. V., “Usloviya suschestvovaniya periodicheskogo resheniya differentsialnogo uravneniya vtorogo poryadka s kvadratichnoi nelineinoi chastyu”, Vestn. RAEN., 18:4 (2018), 3–7 | Zbl

[2] Leonov G. A., Burkin I. M., Shepelyavyi A. I., Chastotnye metody v teorii kolebanii, Izd-vo SPbGU, SPb., 1992 | MR

[3] Liskina E. Yu., “Usloviya suschestvovaniya nenulevykh periodicheskikh reshenii nelineinoi avtonomnoi dinamicheskoi sistemy vtorogo poryadka v sluchae pary nulevykh sobstvennykh znachenii matritsy sistemy lineinogo priblizheniya”, Vestn. RAEN., 17:4 (2017), 38–43

[4] Mamonov S. S., Kharlamova A. O., “Vynuzhdennaya sinkhronizatsiya sistem fazovoi avtopodstroiki s zapazdyvaniem”, Vestn. Ryazan. gos. radiotekhn. un-ta., 62 (2017), 26–35

[5] Mamonov S. S., Kharlamova A. O., “Opredelenie uslovii suschestvovaiya predelnykh tsiklov pervogo roda sistem s tsilindricheskim fazovym prostranstvom”, Zh. Srednevolzh. mat. o-va., 19:1 (2017), 67–76 | MR | Zbl

[6] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Kolebatelno-vraschatelnye tsikly fazovoi sistemy differentsialnykh uravnenii”, Vestn. RAEN., 18:4 (2018), 51–57

[7] Mamonov S. S., Kharlamova A. O., Ionova I. V., “Krivizna kolebatelnykh tsiklov fazovykh sistem”, Vestn. RAEN., 19:2 (2019), 105–110

[8] Mun F., Khaoticheskie kolebaniya, Mir, M., 1990