Nonsmooth integral direction potentials in the problem of the asymptotic behavior of trajectories of some classes of functional differential inclusions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we present new methods for solving the problem of the asymptotic behavior of trajectories of control systems governed by functional differential inclusions with nonconvex-valued right-hand sides. The main tool for solving this problem is the method of nonsmooth integral directing potentials.
Keywords: asymptotic behavior, functional differential inclusion, nonsmooth integral directing potential.
Mots-clés : normal multimap
@article{INTO_2020_186_a1,
     author = {Yu. E. Bezmelnitsyna and S. V. Kornev and V. V. Obukhovskii},
     title = {Nonsmooth integral direction potentials in the problem of the asymptotic behavior of trajectories of some classes of functional differential inclusions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {13--20},
     publisher = {mathdoc},
     volume = {186},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_186_a1/}
}
TY  - JOUR
AU  - Yu. E. Bezmelnitsyna
AU  - S. V. Kornev
AU  - V. V. Obukhovskii
TI  - Nonsmooth integral direction potentials in the problem of the asymptotic behavior of trajectories of some classes of functional differential inclusions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 13
EP  - 20
VL  - 186
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_186_a1/
LA  - ru
ID  - INTO_2020_186_a1
ER  - 
%0 Journal Article
%A Yu. E. Bezmelnitsyna
%A S. V. Kornev
%A V. V. Obukhovskii
%T Nonsmooth integral direction potentials in the problem of the asymptotic behavior of trajectories of some classes of functional differential inclusions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 13-20
%V 186
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_186_a1/
%G ru
%F INTO_2020_186_a1
Yu. E. Bezmelnitsyna; S. V. Kornev; V. V. Obukhovskii. Nonsmooth integral direction potentials in the problem of the asymptotic behavior of trajectories of some classes of functional differential inclusions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M. T. Terekhin. Ryazan State University named for S. A. Yesenin, Ryazan, May 17-18, 2019. Part 2, Tome 186 (2020), pp. 13-20. http://geodesic.mathdoc.fr/item/INTO_2020_186_a1/

[1] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., Vvedenie v teoriyu mnogoznachnykh otobrazhenii i differentsialnykh vklyuchenii, Librokom, M., 2011 | MR

[2] Kornev S. V., Obukhovskii V. V., “Asimptoticheskoe povedenie reshenii differentsialnykh vklyuchenii i metod napravlyayuschikh funktsii”, Differentsialnye uravneniya, 51:6 (2015), 700–705 | Zbl

[3] Kornev S. V., “Asimptoticheskoe povedenie reshenii differentsialnykh vklyuchenii s nevypukloi pravoi chastyu”, Vestn. Voronezh. gos. un-ta. Ser. Fizika, matematika, 1 (2016), 96–104 | Zbl

[4] Kornev S. V., Loi N. V., “Metod mnogolistnykh napravlyayuschikh funktsii v zadache o bifurkatsii reshenii differentsialnykh uravnenii”, Vestn. Tamb. un-ta. Ser. Estestvennye i tekhnicheskie nauki, 21:2 (2016), 390–401

[5] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[6] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[7] Arutyunov A. V., Obukhovskii V., Convex and Set-Valued Analysis, Selected Topics, De Gruyter Graduate, Berlin; Walter de Gruyter, Boston, 2017 | MR | Zbl

[8] Avramescu C., “Existence problems for homoclinic solutions”, Abstract and Applied Analysis, 7 (2002), 1–29 | DOI | MR

[9] Avramescu C., “Evanescent solutions of linear ordinary differential equations”, Electronic Journal of Qualitive Theory of Differential Equations, 9 (2002), 1–12 | MR

[10] Avramescu C., “Asymptotic behavior of solutions of nonlinear differential equations and generalized guiding functions”, Electronic Journal of Qualitive Theory of Differential Equations, 13 (2003), 1–9 | MR

[11] Bressan A., Colombo G., “Selections and representations of multifunctions in paracompact spaces”, Studia Math., 102 (1992), 209–216 | DOI | MR | Zbl

[12] Clarke F. H., Optimization and Nonsmooth Analysis, Society for Industrial and Applied Mathematics (SIAM), Classics in Applied Mathematics, 5, PA, Philadelphia, 1990 | MR | Zbl

[13] Górniewicz L., Topological Fixed Point Theory of Multivalued Mappings, Springer, Berlin, 2006 | MR | Zbl

[14] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 7, Walter de Gruyter, Berlin, New York, 2001 | MR

[15] Kornev S., Obukhovskii V., Yao J. C., “On asymptotics of solutions for a class of functional differential inclusions”, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 34 (2014), 219–227 | DOI | MR | Zbl

[16] Kornev S. V., Liou Y. C., “Multivalent guiding functions in the bifurcation problem of differential inclusions”, The Journal of Nonlinear Science and Applications, 9 (2016), 5259–5270 | DOI | MR | Zbl

[17] Kornev S. V., Loi N. V., Obukhovskii V. V., Wen C. F., “Random nonsmooth integral guiding functions and asymptotic behavior of trajectories for random differential inclusions”, Journal of Nonlinear and Convex Analysis, 19:3 (2018), 493–500 | MR | Zbl

[18] Kornev S. V., Obukhovskii V. V., “Asymptotic behavior of solutions for inclusions with causal multioperators and the method of integral guiding potentials”, Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki, 23:122 (2018), 136–144

[19] Kryszewski W., Homotopy Properties of Set-Valued Mappings, Univ. N. Copernicus Publishing, Torun, 1997 | Zbl

[20] Loi N. V., Obukhovskii V., Yao J. C., “A bifurcation of solutions of nonlinear Fredholm inclusions involving $CJ$-multimaps with applications to feedback control systems”, Set-Valued Var. Anal., 21 (2013), 247–269 | DOI | MR | Zbl

[21] Loi N. V., Obukhovskii V., Yao J. C., “A multiparameter global bifurcation theorem with application to a feedback control system”, Fixed Point Theory, 16 (2015), 353–370 | MR | Zbl

[22] Obukhovskii V., Kamenskii M., Kornev S., Liou Y. C., “On asymptotics of solutions for a class of differential inclusions with a regular right-hand part”, Journal of Nonlinear and Convex Analysis, 18:5 (2017), 967–975 | MR | Zbl

[23] Obukhovskii V., Loi N. V., Kornev S., “Existence and global bifurcation of solutions for a class of operator-differential inclusions”, Differ. Equ. Dyn. Syst., 20:3 (2012), 285–300 | DOI | MR | Zbl

[24] Obukhovskii V., Zecca P., Loi N. V., Kornev S., Method of Guiding Functions in Problems of Nonlinear Analysis, Lecture Notes in Math., 2076, Springer, Berlin, 2013 | DOI | MR | Zbl