On the duality in the theory of smooth manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 132-136
Voir la notice du chapitre de livre
In this paper, we discuss an important and nontrivial theorem on evaluation homomorphisms. We state this theorem as a canonical duality between the family of all smooth mappings $f\in \operatorname{Hom}(M,M')$ of a smooth real finite-dimensional manifold $M$ into a similar manifold $M'$ and the family of homomorphisms $\varphi$ of the algebra $C^{\infty}(M')$ of smooth scalar-valued functions on $M'$ into the analogous algebra $C^{\infty}(M)$ on $M$, $\varphi\in \operatorname{Hom}\big(C^{\infty}(M'),C^{\infty}(M)\big)$. This formulation possesses the maximum natural generality and, at the same time, allows it to be used in applications in the standard canonical form.
Keywords:
smooth manifold, smooth function, duality.
Mots-clés : homomorphism
Mots-clés : homomorphism
@article{INTO_2020_185_a9,
author = {A. V. Ovchinnikov},
title = {On the duality in the theory of smooth manifolds},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {132--136},
year = {2020},
volume = {185},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/}
}
TY - JOUR AU - A. V. Ovchinnikov TI - On the duality in the theory of smooth manifolds JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 132 EP - 136 VL - 185 UR - http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/ LA - ru ID - INTO_2020_185_a9 ER -
A. V. Ovchinnikov. On the duality in the theory of smooth manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 132-136. http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/
[1] Agrachev A. A., Gamkrelidze R. V., Vakhrameev S. A., “Obyknovennye differentsialnye uravneniya na vektornykh rassloeniyakh i khronologicheskoe ischislenie”, Itogi nauki tekhn. Sovrem. probl. mat. Nov. dostizh., 35 (1989), 3–107 | Zbl
[2] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[3] Bukhshtaber V. M., Ris E. G., “Koltsa nepreryvnykh funktsii, simmetricheskie proizvedeniya i algebry Frobeniusa”, Usp. mat. nauk., 59:1 (355) (2004), 125–144 | MR
[4] Kirillov A. A., Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002
[5] Nestruev Dzh., Gladkie mnogoobraziya i nablyudaemye, MTsNMO, M, 2000