On the duality in the theory of smooth manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 132-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss an important and nontrivial theorem on evaluation homomorphisms. We state this theorem as a canonical duality between the family of all smooth mappings $f\in \operatorname{Hom}(M,M')$ of a smooth real finite-dimensional manifold $M$ into a similar manifold $M'$ and the family of homomorphisms $\varphi$ of the algebra $C^{\infty}(M')$ of smooth scalar-valued functions on $M'$ into the analogous algebra $C^{\infty}(M)$ on $M$, $\varphi\in \operatorname{Hom}\big(C^{\infty}(M'),C^{\infty}(M)\big)$. This formulation possesses the maximum natural generality and, at the same time, allows it to be used in applications in the standard canonical form.
Keywords: smooth manifold, smooth function, duality.
Mots-clés : homomorphism
@article{INTO_2020_185_a9,
     author = {A. V. Ovchinnikov},
     title = {On the duality in the theory of smooth manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {132--136},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/}
}
TY  - JOUR
AU  - A. V. Ovchinnikov
TI  - On the duality in the theory of smooth manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 132
EP  - 136
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/
LA  - ru
ID  - INTO_2020_185_a9
ER  - 
%0 Journal Article
%A A. V. Ovchinnikov
%T On the duality in the theory of smooth manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 132-136
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/
%G ru
%F INTO_2020_185_a9
A. V. Ovchinnikov. On the duality in the theory of smooth manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 132-136. http://geodesic.mathdoc.fr/item/INTO_2020_185_a9/

[1] Agrachev A. A., Gamkrelidze R. V., Vakhrameev S. A., “Obyknovennye differentsialnye uravneniya na vektornykh rassloeniyakh i khronologicheskoe ischislenie”, Itogi nauki tekhn. Sovrem. probl. mat. Nov. dostizh., 35 (1989), 3–107 | Zbl

[2] Agrachev A. A., Sachkov Yu. L., Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[3] Bukhshtaber V. M., Ris E. G., “Koltsa nepreryvnykh funktsii, simmetricheskie proizvedeniya i algebry Frobeniusa”, Usp. mat. nauk., 59:1 (355) (2004), 125–144 | MR

[4] Kirillov A. A., Lektsii po metodu orbit, Nauchnaya kniga, Novosibirsk, 2002

[5] Nestruev Dzh., Gladkie mnogoobraziya i nablyudaemye, MTsNMO, M, 2000