Mathematical modeling of vibration devices
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical models of vibration devices designed to intensify technological processes are considered. Mathematical models are initial-boundary-value problems for coupled systems of partial differential equations for hydrodynamic functions and deformation functions of elastic elements. We examine the dynamics and dynamic stability of elastic elements. The study of dynamics is based of the Bubnov–Galerkin method. The study of dynamical stability is based on the construction of positive definite Lyapunov-type functionals.
Keywords: aerohydroelasticity, elastic plate, deformation, dynamics, stability, partial differential equation, Bubnov–Galerkin method, Lyapunov functional.
@article{INTO_2020_185_a4,
     author = {P. A. Vel'misov and A. V. Ankilov and Yu. V. Pokladova},
     title = {Mathematical modeling of vibration devices},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a4/}
}
TY  - JOUR
AU  - P. A. Vel'misov
AU  - A. V. Ankilov
AU  - Yu. V. Pokladova
TI  - Mathematical modeling of vibration devices
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 37
EP  - 49
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a4/
LA  - ru
ID  - INTO_2020_185_a4
ER  - 
%0 Journal Article
%A P. A. Vel'misov
%A A. V. Ankilov
%A Yu. V. Pokladova
%T Mathematical modeling of vibration devices
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 37-49
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a4/
%G ru
%F INTO_2020_185_a4
P. A. Vel'misov; A. V. Ankilov; Yu. V. Pokladova. Mathematical modeling of vibration devices. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 37-49. http://geodesic.mathdoc.fr/item/INTO_2020_185_a4/

[1] Ageev R. V., Mogilevich L. I., Popov V. S., “Kolebaniya stenok schelevogo kanala s vyazkoi zhidkostyu, obrazovannogo trekhsloinym i tverdym diskami”, Probl. mashinostr. nadezhn. mashin., 1 (2014), 3–11

[2] Ageev R. V., Mogilevich L. I., Popov V. S., Kuznetsova E. L., Kulikov N. I., “Matematicheskaya model dvizheniya pulsiruyuschego sloya vyazkoi zhidkosti v kanale s uprugoi stenkoi”, Vestn. Perm. nats. issl. politekhn. un-ta. Mekh., 3 (2014), 17–35

[3] Ageev R. V., Mogilevich L. I., Popov V. S., Popova A. A., “Dvizhenie vyazkoi zhidkosti v ploskom kanale, obrazovannom vibriruyuschim shtampom i sharnirno opertoi plastinoi”, Tr. MAI., 78 (2014), 1–13

[4] Ankilov A. V., Velmisov P. A., “Ustoichivost reshenii nekotorykh klassov integro-differentsialnykh uravnenii v chastnykh proizvodnykh”, Vestn. Samar. gos. un-ta., 8/1 (67) (2008), 331–344

[5] Ankilov A. V., Velmisov P. A., Dinamika i ustoichivost uprugikh plastin pri aerogidrodinamicheskom vozdeistvii, UlGTU, Ulyanovsk, 2009

[6] Ankilov A. V., Velmisov P. A., Matematicheskoe modelirovanie v zadachakh dinamicheskoi ustoichivosti deformiruemykh elementov konstruktsii pri aerogidrodinamicheskom vozdeistvii, UlGTU, Ulyanovsk, 2013

[7] Ankilov A. V., Velmisov P. A., Funktsionaly Lyapunova v nekotorykh zadachakh dinamicheskoi ustoichivosti aerouprugikh konstruktsii, UlGTU, Ulyanovsk, 2015

[8] Ankilov A. V., Velmisov P. A., Semenova E. P., “Issledovanie dinamicheskoi ustoichivosti uprugikh elementov stenok kanala”, Vestn. Saratov. gos. tekhn. un-ta., 2 (38):1 (2009), 7–17

[9] Velmisov P. A., Ankilov A. V., “Dinamicheskaya ustoichivost deformiruemykh elementov konstruktsii pri sverkhzvukovom rezhime obtekaniya”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki., 22:1 (2018), 96–115 | Zbl

[10] Velmisov P. A., Pokladova Yu. V., Issledovanie dinamiki deformiruemykh elementov nekotorykh aerogidrouprugikh sistem, UlGTU, Ulyanovsk, 2018

[11] Velmisov P. A., Pokladova Yu. V., “Matematicheskoe modelirovanie dinamiki uprugikh elementov, vzaimodeistvuyuschikh s potokom gaza”, Vestn. Ulyanovsk. gos. tekhn. un-ta., 3 (2018), 22–30

[12] Velmisov P. A., Pokladova Yu. V., “Matematicheskoe modelirovanie dinamiki zaschitnoi poverkhnosti rezervuara”, Vestn. Ulyanovsk. gos. tekhn. un-ta., 2 (2018), 27–35

[13] Velmisov P. A., Pokladova Yu. V., Serebryannikova E. S., “Matematicheskoe modelirovanie sistemy «truboprovod–datchik davleniya»”, Zh. Srednevolzh. mat. o-va., 12:4 (2010), 85–93

[14] Kollatts L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968

[15] Kulikov A. N., “Bifurkatsiya avtokolebanii pri malom koeffitsiente dempfirovaniya v sverkhzvukovom potoke gaza”, Prikl. mat. mekh., 73:2 (2009), 271–281 | Zbl

[16] Mogilevich L. I., Popov V. S., Popova A. A., Khristoforova A. V., “Matematicheskoe modelirovanie dinamiki vzaimodeistviya silnovyazkoi zhidkosti so stenkami kanala, ustanovlennogo na uprugom osnovanii”, Dinam. sist. mekh. mashin., 3:1 (2016), 350–354

[17] Abdelbaki A. R., Paidoussis M. P., Misra A. K., “A nonlinear model for a free-clamped cylinder subjected to confined axial flow”, J. Fluids Struct., 80 (2018), 390–404

[18] Abdelbaki A. R., Paidoussis M. P., Misra A. K., “A nonlinear model for a hanging tubular cantilever simultaneously subjected to internal and confined external axial flows”, J. Sound Vibr., 449 (2019), 349–367

[19] Ankilov A. V., Velmisov P. A., “Mathematical modelling of dynamics and stability of elastic elements of vibration devices”, IFAC-PapersOnLine., 48:11 (2015), 970–975

[20] Ankilov A. V., Vel'misov P. A., “Stability of solutions to an aerohydroelasticity problem”, J. Math. Sci., 219:1 (2016), 14–26 | MR | Zbl

[21] Faal R. T., Derakhshan D., “Flow-induced vibration of pipeline on elastic support”, Proc. Eng., 14 (2011), 2986–2993

[22] Gatica G. N., Heuer N., Meddahi S., “Coupling of mixed finite element and stabilized boundary element methods for a fluid-solid interaction problem in 3D”, Num. Meth. Partial Differ. Equations., 30:4 (2014), 1211–1233 | MR | Zbl

[23] Kontzialis K., Moditis K., Paidoussis M. P., “Transient simulations of the fluid-structure interaction response of a partially confined pipe under axial flows in opposite directions”, J. Pressure Vessel Techn., 139 (3) (2017), 1–8

[24] Moditis K., Paidoussis M., Ratigan J., “Dynamics of a partially confined, discharging, cantilever pipe with reverse external flow”, J. Fluids Struct., 63 (2016), 120–139

[25] Mogilevich L. I., Popova A. A., Popov V. S., “On the dynamic interaction of an elastic cylindrical shell with a fluid laminar stream inside in application to pipeline transportation”, Sci. Techn. Transport., 2 (2007), 69–72

[26] Moshkelgosha E., Askari E., Jeong K. H., Shafiee A. A., “Fluid-structure coupling of concentric double FGM shells with different lengths”, J. Struct. Eng. Mech., 61:2 (2017), 231–244