Qualitative research in the Poincar\'e circle of one family of dynamical systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 19-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss an extensive family of dynamical systems whose characteristic feature is a polynomial right-hand side containing coprime forms of the phase variables of the system. One of the equations of the system contains a third-degree polynomial (cubic form), the other equation contains a quadratic form. We consider the problem of constructing all possible phase portraits in the Poincaré circle for systems from the family considered and establish criteria for the realization of each portrait that are close to coefficient criteria. This problem is solved by using the central and orthogonal Poincaré methods of sequential mappings and a number of other methods developed by the authors for the purposes of this study. We obtained rigorous qualitative and quantitative results. More than 250 topologically distinct phase portraits of various systems were constructed. The absence of limit cycles of systems of this family is proved. Methods developed can be useful for the further study of systems with polynomial right-hand sides of other forms.
Keywords: dynamical system, Poincaré circle, Poincaré sphere, trajectory, phase space, separatrix, polynomial right-hand side, singular point, limit cycle.
Mots-clés : phase portrait
@article{INTO_2020_185_a2,
     author = {I. A. Andreeva and A. F. Andreev},
     title = {Qualitative research in the {Poincar\'e} circle of one family of dynamical systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/}
}
TY  - JOUR
AU  - I. A. Andreeva
AU  - A. F. Andreev
TI  - Qualitative research in the Poincar\'e circle of one family of dynamical systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 19
EP  - 27
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/
LA  - ru
ID  - INTO_2020_185_a2
ER  - 
%0 Journal Article
%A I. A. Andreeva
%A A. F. Andreev
%T Qualitative research in the Poincar\'e circle of one family of dynamical systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 19-27
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/
%G ru
%F INTO_2020_185_a2
I. A. Andreeva; A. F. Andreev. Qualitative research in the Poincar\'e circle of one family of dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 19-27. http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/

[21] Andreev A. F., Osobye tochki differentsialnykh uravnenii, Minsk, 1979

[22] Andreev A. F., Vvedenie v lokalnuyu kachestvennuyu teoriyu differentsialnykh uravnenii, SPb., 2003

[23] Andreev A. F., Andreeva I. A., “Fazovye potoki odnogo semeistva kubicheskikh sistem v kruge Puankare, I”, Differ. uravn. protsessy upravl., 4 (2007), 17–26 | Zbl

[24] Andreev A. F., Andreeva I. A., “Fazovye potoki odnogo semeistva kubicheskikh sistem v kruge Puankare, II”, Differ. uravn. protsessy upravl., 1 (2008), 1–13 | Zbl

[25] Andreev A. F., Andreeva I. A., “Fazovye potoki odnogo semeistva kubicheskikh sistem v kruge Puankare, III”, Differ. uravn. protsessy upravl., 3 (2008), 39–54 | Zbl

[26] Andreev A. F., Andreeva I. A., “Fazovye potoki odnogo semeistva kubicheskikh sistem v kruge Puankare, IV$_1$”, Differ. uravn. protsessy upravl., 4 (2009), 181–213 | Zbl

[27] Andreeva I. A., “Ob odnom spetsialnom semeistve kubicheskikh dinamicheskikh sistem”, Sb. mat. XXVI Mezhdunar. konf. «Matematika. Kompyuter. Obrazovanie» (Puschinskii tsentr RAN, 28 yanvarya–02 fevralya 2019 g.)

[28] Andreeva I. A., Andreev A. F., Fazovye portrety odnogo semeistva kubicheskikh sistem v kruge Puankare, Lambert, Saarbrucken, 2017

[29] Andreeva I. A., Andreev A. F., “Fazovye portrety odnogo semeistva kubicheskikh sistem v kruge Puankare, I”, Vestn. RAEN., 4 (2017), 8–18

[30] Andreeva I. A., Andreev A. F., “Fazovye portrety odnogo semeistva kubicheskikh sistem v kruge Puankare”, XXVIII Krymskaya osennyaya matematicheskaya shkola-simpozium po spektralnym i evolyutsionnym zadacham (KROMSh-2017), 2017, 53–-55

[31] Andreeva I. A., Andreev A. F., “Rezultaty issledovaniya semeistva kubicheskikh dinamicheskikh sistem v kruge Puankare”, Tez. dokl. mezhdunar. konf. «Geometricheskie metody v teorii upravleniya i matematicheskoi fizike» (Ryazan, 25–28 sentyabrya 2018 g.), 6

[32] Andreeva I. A., Andreev A. F., “Fazovye portrety semeistva kubicheskikh sistem v kruge Puankare, II”, Vestn. RAEN., 4 (2018), 11–15

[33] Andreeva I. A., Andreev A. F., “O kartine traektorii nekotorogo semeistva kubicheskikh dinamicheskikh sistem”, Sb. mat. mezhdunar. konf. «XXIKh Krymskaya osennyaya matematicheskaya shkola-simpozium po spektralnym i evolyutsionnym zadacham», 2018, 99–101

[34] Andreeva I. A., Andreev A. F., “Fazovye portrety nekotorogo semeistva kubicheskikh dinamicheskikh sistem v kruge Puankare, III”, Vestn. RAEN., 2 (2019), 20–24

[35] Andreeva I. A., Andreev A. F., Sadovskii A. P., Detchenya L. V., Makovetskaya T. V., “Nilpotentnye tsentry kubicheskikh sistem”, Differ. uravn., 53:8 (2017), 1003-–1008 | MR | Zbl

[36] Andronov A. A., Leontovich E. A., Gordon I. I., Maier A. G., Kachestvennaya teoriya dinamicheskikh sistem vtorogo poryadka, Nauka, M., 1966 | MR

[37] Puankare A., O krivykh, opredelyaemykh differentsialnymi uravneniyami, OGIZ, M., 1947

[38] Andreeva I., Andreev A., “Investigation of a family of cubic dynamic systems”, Vibroeng. Proc., 15 (2017), 88–93 | DOI

[39] Andreeva I. A., Andreev A. F., “On a behavior of trajectories of a certain family of cubic dynamic systems in a Poincaré circle”, J. Phys. Conf. Ser., 1141 (2018), 012114 | DOI

[40] Andreeva I., Andreev A., “Phase portraits of cubic dynamic systems in a Poincaré circle”, Differential Equations. Theory and Current Research, eds. Moschandreou T. E., London, UK, 2018

[41] Andreeva I. A., Andreev A. F., Detchenya L. V., Makovetskaya T. V., Sadovskii A. P., “Nilpotent centers of cubic systems”, Differ. Equations., 53:8 (2017), 975–980 | DOI | MR | Zbl

[42] Andreeva I. A., Efimova T. O., “Phase portraits of a special class of dynamic systems in a Poincaré circle”, J. Phys. Conf. Ser., 1236 (2019), 012053 | DOI

[43] Poincaré H., Les methodes nouvelles de la mecanique celeste, Paris, 1892–99 | MR | Zbl