Qualitative research in the Poincar\'e circle of one family of dynamical systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 19-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we discuss an extensive family of dynamical systems whose characteristic feature is a polynomial right-hand side containing coprime forms of the phase variables of the system. One of the equations of the system contains a third-degree polynomial (cubic form), the other equation contains a quadratic form. We consider the problem of constructing all possible phase portraits in the Poincaré circle for systems from the family considered and establish criteria for the realization of each portrait that are close to coefficient criteria. This problem is solved by using the central and orthogonal Poincaré methods of sequential mappings and a number of other methods developed by the authors for the purposes of this study. We obtained rigorous qualitative and quantitative results. More than 250 topologically distinct phase portraits of various systems were constructed. The absence of limit cycles of systems of this family is proved. Methods developed can be useful for the further study of systems with polynomial right-hand sides of other forms.
Keywords: dynamical system, Poincaré circle, Poincaré sphere, trajectory, phase space, separatrix, polynomial right-hand side, singular point, limit cycle.
Mots-clés : phase portrait
@article{INTO_2020_185_a2,
     author = {I. A. Andreeva and A. F. Andreev},
     title = {Qualitative research in the {Poincar\'e} circle of one family of dynamical systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {19--27},
     publisher = {mathdoc},
     volume = {185},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/}
}
TY  - JOUR
AU  - I. A. Andreeva
AU  - A. F. Andreev
TI  - Qualitative research in the Poincar\'e circle of one family of dynamical systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 19
EP  - 27
VL  - 185
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/
LA  - ru
ID  - INTO_2020_185_a2
ER  - 
%0 Journal Article
%A I. A. Andreeva
%A A. F. Andreev
%T Qualitative research in the Poincar\'e circle of one family of dynamical systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 19-27
%V 185
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/
%G ru
%F INTO_2020_185_a2
I. A. Andreeva; A. F. Andreev. Qualitative research in the Poincar\'e circle of one family of dynamical systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the All-Russian Scientific Conference «Differential Equations and Their Applications» dedicated to the 85th anniversary of Professor M.T.Terekhin. Ryazan State University named for S.A. Yesenin, Ryazan, May 17-18, 2019. Part 1, Tome 185 (2020), pp. 19-27. http://geodesic.mathdoc.fr/item/INTO_2020_185_a2/