Synthesis of distributed optimal control in the tracking problem at the optimization of thermal processes described by integro-differential equations
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 85-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the synthesis problem for a distributed thermal control system in the case where a Fredholm integral operator is involved in the boundary-value problem. We use the method proposed by A. I. Egorov and develop it based on the Bellman scheme. Using the notions of a generalized solution of a boundary-value problem and the Frechet differential for the Bellman functional, we obtain a partial integro-differential equation. For synthesizing a distributed optimal control, we propose a numerical algorithm.
Keywords: generalized solution, Bellman functional, Fréchet differential, integro-differential equation, synthesis of optimal control.
@article{INTO_2020_183_a7,
     author = {A. K. Kerimbekov},
     title = {Synthesis of distributed optimal control in the tracking problem at the optimization of thermal processes described by integro-differential equations},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {85--97},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a7/}
}
TY  - JOUR
AU  - A. K. Kerimbekov
TI  - Synthesis of distributed optimal control in the tracking problem at the optimization of thermal processes described by integro-differential equations
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 85
EP  - 97
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a7/
LA  - ru
ID  - INTO_2020_183_a7
ER  - 
%0 Journal Article
%A A. K. Kerimbekov
%T Synthesis of distributed optimal control in the tracking problem at the optimization of thermal processes described by integro-differential equations
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 85-97
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a7/
%G ru
%F INTO_2020_183_a7
A. K. Kerimbekov. Synthesis of distributed optimal control in the tracking problem at the optimization of thermal processes described by integro-differential equations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 85-97. http://geodesic.mathdoc.fr/item/INTO_2020_183_a7/

[1] Butkovskii A. G., Teoriya optimalnogo upravleniya sistemami s raspredelennymi parametrami, Nauka, M., 1965

[2] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. Mat. in-ta im. V. A. Steklova AN SSSR., 61 (1961), 3–158

[3] Volterra V., Teoriya funktsionalov, integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1984

[4] Egorov A. I., “Optimalnye protsessy v sistemakh s raspredelennymi parametrami i nekotorye zadachi teorii invariantnosti”, Izv. AN SSSR. Ser. mat., 29:6 (1965), 1205–1260 | Zbl

[5] Egorov A. I., “Neobkhodimye usloviya optimalnosti dlya sistem s raspredelennymi parametrami”, Mat. sb., 69 (111):3 (1966), 371–421 | Zbl

[6] Egorov A. I., Optimalnoe upravlenie teplovymi i diffuzionnymi protsessami, Nauka, M., 1978

[7] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[8] Plotnikov V. I., “Energeticheskoe neravenstvo i svoistvo pereopredelennosti sistemy sobstvennykh funktsii”, Izv. AN SSSR. Ser. mat., 32:4 (1968), 743–755 | Zbl

[9] Rakhimov M. O., O sinteze optimalnogo upravleniya uprugimi kolebaniyami, Diss. na soisk. uch. step. kand. fiz.-mat. nauk., Ashkhabad, 1979

[10] Rakhimov M. O., Primenenie metodov dinamicheskogo programmirovaniya i spektralnogo razlozheniya k zadacham optimalnogo upravleniya sistemami s raspredelennymi parametrami, Diss. na soisk. uch. step. dokt. fiz.-mat. nauk., M., 1989

[11] Sirazetdinov T. K., Optimizatsiya sistem s raspredelennymi parametrami, Nauka, M., 1977 | MR

[12] Smirnov V. I., Kurs vysshei matematiki, Nauka, M., 1947 | MR

[13] Abdyldaeva E., Kerimbekov A., “The optimal vector control for the elastic oscillations described by Fredholm integro-differential equations”, Proc. Int. Conf. on Noncommutative Analysis and Partial Differential Equations (London, April 11-15, 2016), Springer, New York, 2019, 14–30 | MR | Zbl

[14] Bachoy G., The Bellman Method in Control Problems with Distributed Parameters, Ştiinţa, Chişinău, 1974 | MR

[15] Bellman R., “The theory of dynamic programming”, Bull. Am. Math. Soc., 60:6 (1954), 503–515 | DOI | MR | Zbl

[16] Butkovsky A. G., Egorov A. I., and K. A. Lurie, “Optimal control of distributed systems”, SIAM J. Control, 6 (1968), 437–476 | DOI | MR | Zbl

[17] Kerimbekov A., Nonlinear Optimal Control of Linear Systems with Distributed Parameters, Ilim, Bishkek, 2003 (in Russian)

[18] Kerimbekov A., “On the solvability of a nonlinear optimal control problem for the thermal processes described by Fredholm integro-differential equations”, Proc. 9th Int. ISAAC Congr. (Kraków, Poland, August 5–9, 2013), Birkhäuser, 2015, 803–822 | MR

[19] Kerimbekov A., “On a class of solutions of the nonlinear integral Fredholm equation”, Proc. 11th Int. ISAAC Congr. (Växjö, Sweden, August 14–18, 2017), Birkhäuser, 2019, 191–197 | Zbl

[20] Kerimbekov A. K., Abdyldaeva E. F., “Optimal distributed control for the processes of oscillation described by Fredholm integro-differential equations”, Eurasian Math. J., 6:2 (2015), 18–40 | MR | Zbl

[21] Kerimbekov A., Abdyldaeva E., “On the solvability of a nonlinear tracking problem under boundary control for the elastic oscillations described by Fredholm integro-differential equations”, IFIP Conf. Syst. Model. Optim., 494 (2016), 312–321

[22] Kerimbekov A., Abdyldaeva E. F., Duyshenalieva U. E., “Generalized solution of a boundary-value problem under point exposure of external forces”, Int. J. Pure Appl. Math., 113:4 (2017), 87–101

[23] Kerimbekov A., Abdyldaeva E., Duishenalieva U., Seidakmat Kyzy E., “On solvability of optimization problem for elastic oscillations with multipoint sources of control”, AIP Conf. Proc., 1880:1 (2017), 060009 | DOI

[24] Kerimbekov A., Tairova O. K., “On the solvability of synthesis problem for optimal point control of oscillatory processes”, IFAC PapersOnLine., 51:32 (2018), 754–758 | DOI

[25] Khurshudyan A. Z., “On optimal boundary and distributed control of partial integro-differential equations”, Arch. Control Sci., 24:1 (2014), 5–25 | DOI | MR | Zbl

[26] Komkov V., Optimal Control Theory For the Dmaping Of Vibrations Of Simple Elatic Systems, Springer-Verlag, Berlin, 1972 | MR

[27] Richtmyer R. D., Principles of Advanced Mathematical Physics, Springer, New York, 1965 | MR

[28] Sachs E. W., “Efficient solution of a partial integro-differntial equation in finance”, Appl. Numer. Math., 58 (2008), 1687–1703 | DOI | MR | Zbl

[29] Seidakmat Kyzy E., Kerimbekov A., “On solvability of tracking problem under nonlinear boundary control”, Proc. 11th Int. ISAAC Congr. (Växjö, Sweden, August 14–18, 2017), Birkhäuser, 2019, 207–218 | Zbl

[30] Thorwe J., “Solving partial integro-differntial equations using Laplace transform method”, Appl. Math., 2:3 (2012), 101–104