Fixed-point methods in optimization problems for control systems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 22-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a new approach to optimization of nonlinear control systems based on the representation of optimality conditions and improvement of the control in the form of special fixed-point problems for control operators. We propose algorithms for approximate solution of optimal control problems based on iterative methods for finding fixed points. The effectiveness of the optimization methods proposed is illustrated by model and test problems.
Keywords: control system, conditions for improvement and optimality of control, fixed-point problem, numerical optimization algorithms.
@article{INTO_2020_183_a2,
     author = {A. S. Buldaev},
     title = {Fixed-point methods in optimization problems for control systems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {22--34},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a2/}
}
TY  - JOUR
AU  - A. S. Buldaev
TI  - Fixed-point methods in optimization problems for control systems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 22
EP  - 34
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a2/
LA  - ru
ID  - INTO_2020_183_a2
ER  - 
%0 Journal Article
%A A. S. Buldaev
%T Fixed-point methods in optimization problems for control systems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 22-34
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a2/
%G ru
%F INTO_2020_183_a2
A. S. Buldaev. Fixed-point methods in optimization problems for control systems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 22-34. http://geodesic.mathdoc.fr/item/INTO_2020_183_a2/

[1] Buldaev A. S., Metody vozmuschenii v zadachakh uluchsheniya i optimizatsii upravlyaemykh sistem, Izd-vo Buryat. un-ta, Ulan-Ude, 2008

[2] Buldaev A. S., Metody nepodvizhnykh tochek v zadachakh optimalnogo upravleniya, Izd-vo Buryat. un-ta, Ulan-Ude, 2016

[3] Buldaev A. S., “Metody nepodvizhnykh tochek na osnove operatsii proektirovaniya v zadachakh optimizatsii upravlyayuschikh funktsii i parametrov dinamicheskikh sistem”, Vestn. Buryat. un-ta. Mat. Inform., 2017, no. 1, 38–54

[4] Gornov A. Yu., Vychislitelnye tekhnologii resheniya zadach optimalnogo upravleniya, Nauka, Novosibirsk, 2009

[5] Samarskii A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989

[6] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[7] Forsait Dzh., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980