Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 120-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine differential equations with nonclassical initial conditions and irreversible operators in their principal parts. We find necessary and sufficient conditions for the existence of unbounded solutions with a $p$th-order pole at points where the operator in the principal part of the differential equation is irreversible. Based on the alternative Lyapunov–Schmidt method and Laurent expansions, we propose a two-stage method for constructing expansion coefficients of the solution in a neighborhood of a pole. Illustrative examples are given. We develop the techniques of skeleton chains of linear operators in Banach spaces and discuss its applications to the statement of initial conditions for differential equations. The results obtained develop the theory of degenerate differential equations.
Keywords: Fredholm operator, collapsing solution, skeleton chain, initial-value problem.
Mots-clés : Laurent series
@article{INTO_2020_183_a10,
     author = {N. A. Sidorov and A. I. Dreglea},
     title = {Differential equations in {Banach} spaces with an irreversible operator in the principal part and nonclassical initial conditions},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {120--129},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/}
}
TY  - JOUR
AU  - N. A. Sidorov
AU  - A. I. Dreglea
TI  - Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 120
EP  - 129
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/
LA  - ru
ID  - INTO_2020_183_a10
ER  - 
%0 Journal Article
%A N. A. Sidorov
%A A. I. Dreglea
%T Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 120-129
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/
%G ru
%F INTO_2020_183_a10
N. A. Sidorov; A. I. Dreglea. Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 120-129. http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/

[1] Keller A. V., Zagrebina S. A., “Nekotorye obobscheniya zadachi Shouoltera—Sidorova dlya modelei sobolevskogo tipa”, Vestn. YuUrGU. Ser. Mat. model. program., 8:2 (2015), 5–23 | Zbl

[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007

[3] Sviridyuk G. A., Manakova N. A., “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera—Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Mat. model. program., 7:1 (2014), 90–103 | Zbl

[4] Sidorov N. A., Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Izd-vo IGU, Irkutsk, 1982

[5] Sidorov N. A., “Ob odnom klasse vyrozhdennykh differentsialnykh uravnenii s konvergentsiei”, Mat. zametki., 35:4 (1984), 569–578 | MR | Zbl

[6] Sidorov N. A., Blagodatskaya E. B., Differentsialnye uravneniya s fredgolmovym operatrom pri starshem differentsialnom vyrazhenii, SO AN SSSR, Irkutskii vychislitelnyi tsentr, Irkutsk, 1986

[7] Sidorov N. A., Blagodatskaya E. B., “Differentsialnye uravneniya s fredgolmovym operatorom v glavnoi chasti differentsialnogo vyrazheniya”, Dokl. AN SSSR., 319:5 (1991), 1087–1090 | Zbl

[8] Sidorov N. A., Leontev R. Yu., Dreglya A. I., “O malykh resheniyakh nelineinykh uravnenii s vektornym parametrom v sektorialnykh okrestnostyakh”, Mat. zametki., 91:1 (2012), 120–135

[9] Sidorov N. A., Sidorov D. N., “O reshenii integralnogo uravneniya Gammershteina v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Sib. mat. zh., 51:2 (2010), 404–409 | MR | Zbl

[10] Sidorov N. A., Sidorov D. N., “O razreshimosti odnogo klassa operatornykh uravnenii Volterra pervogo roda s kusochno nepreryvnymi yadrami”, Mat. zametki., 96:5 (2014), 773–789 | MR | Zbl

[11] Sidorov N. A., Sidorov D. N., Krasnik A. V., “O reshenii operatorno-integralnykh uravnenii Volterra v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differ. uravn., 46:6 (2010), 874–-882 | MR | Zbl

[12] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl

[13] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh integrodifferentsialnykh operatorov v banakhovykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 132 (2017), 127–130 | MR

[14] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integrodifferentsialnogo uravneniya fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl

[15] Dreglea A. I., Sidorov N. A., “Integral equations in identification of external force and heat source density dynamics”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 3, 68–77 | MR | Zbl

[16] Sidorov N. A., “Classic solutions of boundary-value problems for partial differential equations with operator of finite index in the main part of equation”, Izv. Irkutsk. gos. un-ta. Ser. mat., 27 (2019), 55–70 | MR | Zbl

[17] Sidorov D. N., Sidorov N. A., “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl

[18] Sidorov D. N., Sidorov N. A., “Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators”, Vestn. YuUrGU. Ser. Mat. model. program., 10:2 (2017), 63–73 | Zbl

[19] Sidorov N., Sidorov D., Li Y., Skeleton decomposition of linear operators in the theory of degenerate differential equations, 2015, arXiv: 1511.08976 [math.CA] | MR

[20] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Springer, 2002 | MR

[21] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, De Gruyter, 2003 | MR