Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_183_a10, author = {N. A. Sidorov and A. I. Dreglea}, title = {Differential equations in {Banach} spaces with an irreversible operator in the principal part and nonclassical initial conditions}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {120--129}, publisher = {mathdoc}, volume = {183}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/} }
TY - JOUR AU - N. A. Sidorov AU - A. I. Dreglea TI - Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 120 EP - 129 VL - 183 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/ LA - ru ID - INTO_2020_183_a10 ER -
%0 Journal Article %A N. A. Sidorov %A A. I. Dreglea %T Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 120-129 %V 183 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/ %G ru %F INTO_2020_183_a10
N. A. Sidorov; A. I. Dreglea. Differential equations in Banach spaces with an irreversible operator in the principal part and nonclassical initial conditions. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 120-129. http://geodesic.mathdoc.fr/item/INTO_2020_183_a10/
[1] Keller A. V., Zagrebina S. A., “Nekotorye obobscheniya zadachi Shouoltera—Sidorova dlya modelei sobolevskogo tipa”, Vestn. YuUrGU. Ser. Mat. model. program., 8:2 (2015), 5–23 | Zbl
[2] Sveshnikov A. G., Alshin A. B., Korpusov M. O., Pletner Yu. D., Lineinye i nelineinye uravneniya sobolevskogo tipa, Fizmatlit, M., 2007
[3] Sviridyuk G. A., Manakova N. A., “Dinamicheskie modeli sobolevskogo tipa s usloviem Shouoltera—Sidorova i additivnymi «shumami»”, Vestn. YuUrGU. Ser. Mat. model. program., 7:1 (2014), 90–103 | Zbl
[4] Sidorov N. A., Obschie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Izd-vo IGU, Irkutsk, 1982
[5] Sidorov N. A., “Ob odnom klasse vyrozhdennykh differentsialnykh uravnenii s konvergentsiei”, Mat. zametki., 35:4 (1984), 569–578 | MR | Zbl
[6] Sidorov N. A., Blagodatskaya E. B., Differentsialnye uravneniya s fredgolmovym operatrom pri starshem differentsialnom vyrazhenii, SO AN SSSR, Irkutskii vychislitelnyi tsentr, Irkutsk, 1986
[7] Sidorov N. A., Blagodatskaya E. B., “Differentsialnye uravneniya s fredgolmovym operatorom v glavnoi chasti differentsialnogo vyrazheniya”, Dokl. AN SSSR., 319:5 (1991), 1087–1090 | Zbl
[8] Sidorov N. A., Leontev R. Yu., Dreglya A. I., “O malykh resheniyakh nelineinykh uravnenii s vektornym parametrom v sektorialnykh okrestnostyakh”, Mat. zametki., 91:1 (2012), 120–135
[9] Sidorov N. A., Sidorov D. N., “O reshenii integralnogo uravneniya Gammershteina v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Sib. mat. zh., 51:2 (2010), 404–409 | MR | Zbl
[10] Sidorov N. A., Sidorov D. N., “O razreshimosti odnogo klassa operatornykh uravnenii Volterra pervogo roda s kusochno nepreryvnymi yadrami”, Mat. zametki., 96:5 (2014), 773–789 | MR | Zbl
[11] Sidorov N. A., Sidorov D. N., Krasnik A. V., “O reshenii operatorno-integralnykh uravnenii Volterra v neregulyarnom sluchae metodom posledovatelnykh priblizhenii”, Differ. uravn., 46:6 (2010), 874–-882 | MR | Zbl
[12] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. mat., 18:1 (1954), 3–50 | MR | Zbl
[13] Falaleev M. V., “Fundamentalnye operator-funktsii singulyarnykh integrodifferentsialnykh operatorov v banakhovykh prostranstvakh”, Itogi nauki i tekhn. Ser. Sovr. mat. prilozh. Temat. obz., 132 (2017), 127–130 | MR
[14] Yuldashev T. K., “O razreshimosti odnoi kraevoi zadachi dlya obyknovennogo integrodifferentsialnogo uravneniya fredgolma s vyrozhdennym yadrom”, Zh. vychisl. mat. mat. fiz., 59:2 (2019), 252–263 | Zbl
[15] Dreglea A. I., Sidorov N. A., “Integral equations in identification of external force and heat source density dynamics”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 3, 68–77 | MR | Zbl
[16] Sidorov N. A., “Classic solutions of boundary-value problems for partial differential equations with operator of finite index in the main part of equation”, Izv. Irkutsk. gos. un-ta. Ser. mat., 27 (2019), 55–70 | MR | Zbl
[17] Sidorov D. N., Sidorov N. A., “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10 | DOI | MR | Zbl
[18] Sidorov D. N., Sidorov N. A., “Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators”, Vestn. YuUrGU. Ser. Mat. model. program., 10:2 (2017), 63–73 | Zbl
[19] Sidorov N., Sidorov D., Li Y., Skeleton decomposition of linear operators in the theory of degenerate differential equations, 2015, arXiv: 1511.08976 [math.CA] | MR
[20] Sidorov N., Loginov B., Sinitsyn A., Falaleev M., Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Springer, 2002 | MR
[21] Sviridyuk G. A., Fedorov V. E., Linear Sobolev-Type Equations and Degenerate Semigroups of Operators, De Gruyter, 2003 | MR