Comparison of the computational efficiency of gradient-type methods in optimal control problems
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimating of the efficiency of iterative methods is determined by results of computational experiments on solving typical test and applied problems. In this paper, we present information on the numerical implementation of typical gradient methods in comparison with modifications proposed by the authors for the approximate solution of certain applied problems from chemical technology and electrical engineering.
Keywords: optimal control problem, improvement procedure, quasi-gradient procedure, computational experiment.
@article{INTO_2020_183_a0,
     author = {V. G. Antonik},
     title = {Comparison of the computational efficiency of gradient-type methods in optimal control problems},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {183},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_183_a0/}
}
TY  - JOUR
AU  - V. G. Antonik
TI  - Comparison of the computational efficiency of gradient-type methods in optimal control problems
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 3
EP  - 13
VL  - 183
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_183_a0/
LA  - ru
ID  - INTO_2020_183_a0
ER  - 
%0 Journal Article
%A V. G. Antonik
%T Comparison of the computational efficiency of gradient-type methods in optimal control problems
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 3-13
%V 183
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_183_a0/
%G ru
%F INTO_2020_183_a0
V. G. Antonik. Comparison of the computational efficiency of gradient-type methods in optimal control problems. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Differential Equations and Optimal Control, Tome 183 (2020), pp. 3-13. http://geodesic.mathdoc.fr/item/INTO_2020_183_a0/

[1] Antonik V. G., Srochko V. A., “Metod proektsii v lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Zh. vychisl. mat. mat. fiz., 38:4 (1998), 564–572 | MR | Zbl

[2] Mamonova N. V., Srochko V. A., “Metod proektsii v lineino-kvadratichnykh zadachakh optimalnogo upravleniya”, Izv. vuzov. Mat., 2001, no. 12, 55–67 | MR | Zbl

[3] Srochko V. A., Iteratsionnye metody resheniya zadach optimalnogo upravleniya, Fizmatlit, M., 2000

[4] Srochko V. A., “Modernizatsiya metodov gradientnogo tipa v zadachakh optimalnogo upravleniya”, Izv. vuzov. Mat., 2002, no. 12, 66–78 | Zbl

[5] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978

[6] Aganovic Z., Gajic Z., “The successive approximation procedure for finite-time optimal control of bilinear systems”, IEEE Trans. Automat. Control., 39:9 (1994), 1932–1935 | DOI | MR | Zbl

[7] Hofer E. P., Tibken B., “An iterative method for the finite-time bilinear-quadratic control problem”, J. Optim. Theory Appl., 57:3 (1988), 411–426 | DOI | MR

[8] Jones D. I., Finch J. W., “Comparison of optimization algorithms”, Int. J. Control., 40:4 (1984), 747–761 | DOI | MR | Zbl