On the Ramsey--Cass--Koopmans problem for consumer choice
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the classical (so-called unrealistic) Ramsey–Cass–Koopmans model. For the corresponding differential equation, we apply the method of analytical approximation of its solutions. In subsequent works, we develop this method and apply it to problems in a more general statement.
Keywords: mathematical model, Ramsey–Cass–Koopmans problem, competitive households, maximization of total utility, differential equation, analytical approximation.
@article{INTO_2020_182_a6,
     author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
     title = {On the {Ramsey--Cass--Koopmans} problem for consumer choice},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {39--44},
     publisher = {mathdoc},
     volume = {182},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a6/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - L. M. Luzhina
AU  - A. Yu. Popov
AU  - V. G. Chirskii
TI  - On the Ramsey--Cass--Koopmans problem for consumer choice
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 39
EP  - 44
VL  - 182
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_182_a6/
LA  - ru
ID  - INTO_2020_182_a6
ER  - 
%0 Journal Article
%A A. I. Kozko
%A L. M. Luzhina
%A A. Yu. Popov
%A V. G. Chirskii
%T On the Ramsey--Cass--Koopmans problem for consumer choice
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 39-44
%V 182
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_182_a6/
%G ru
%F INTO_2020_182_a6
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. On the Ramsey--Cass--Koopmans problem for consumer choice. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 39-44. http://geodesic.mathdoc.fr/item/INTO_2020_182_a6/

[1] Barro R. Dzh., Sala-i-Martin Kh., Ekonomicheskii rost, BINOM—Laboratoriya znanii, M., 2010

[2] Barro R. J., “Laibson meets Ramsey in the neoclassical growth model”, Quart. J. Econ., 1999, no. 114, 1125–1152 | DOI | Zbl

[3] Benassy J.-P., “The Ramsey model”, Macroeconomic Theory, Oxford Univ. Press, New York, 2011, 145-–160 | DOI

[4] Laibson D., “Golden eggs and hyperbolic discounting”, Quart. J. Econ., 1997, no. 112, 443–477 | DOI | Zbl

[5] Ramsey F. P., “A mathematical theory of saving”, Econ. J., 38:152 (1928), 543–-559 | DOI

[6] Spear S. E., Young W., “Optimum savings and optimal growth: the Cass–Malinvaud–Koopmans nexus”, Macroecon. Dyn., 18:1 (2014), 215–243 | DOI