Boundary-value problem for systems of convolutional equations in anisotropic functional spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 66-69
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, anisotropic classes of well-posed Cauchy problems and boundary-value problems for systems of convolutions equations are obtained. For a particular case of differential equations, a hypersurface of conjugate orders of the corresponding polynomial is used, and various classes of well-posed problems are obtained.
Mots-clés :
convolution equation, Fourier transform
Keywords: boundary-value problem, hypersurface of conjugate orders, anisotropic space of functions.
Keywords: boundary-value problem, hypersurface of conjugate orders, anisotropic space of functions.
@article{INTO_2020_182_a10,
author = {{\CYRA}. {\CYRA}. Makarov},
title = {Boundary-value problem for systems of convolutional equations in anisotropic functional spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {66--69},
publisher = {mathdoc},
volume = {182},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_182_a10/}
}
TY - JOUR AU - А. А. Makarov TI - Boundary-value problem for systems of convolutional equations in anisotropic functional spaces JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 66 EP - 69 VL - 182 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_182_a10/ LA - ru ID - INTO_2020_182_a10 ER -
%0 Journal Article %A А. А. Makarov %T Boundary-value problem for systems of convolutional equations in anisotropic functional spaces %J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory %D 2020 %P 66-69 %V 182 %I mathdoc %U http://geodesic.mathdoc.fr/item/INTO_2020_182_a10/ %G ru %F INTO_2020_182_a10
А. А. Makarov. Boundary-value problem for systems of convolutional equations in anisotropic functional spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 4, Tome 182 (2020), pp. 66-69. http://geodesic.mathdoc.fr/item/INTO_2020_182_a10/