On the diffeomorphism groups of foliated manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 74-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce a certain topology on the group $\mathrm{Diff}_F(M)$ of all $C^r$-diffeomorphisms of the foliated manifold $(M;F)$, where $r\ge0$. This topology depends on the foliation and is called the $F$-compact-open topology. It coincides with the compact-open topology when $F$ is an $n$-dimensional foliation. If the codimension of the foliation is $n$, then the convergence in this topology coincides with the pointwise convergence, where $n=\dim M$. We prove that some subgroups of the group $\mathrm{Diff}_F(M)$ are topological groups with the $F$-compact-open topology. Throughout this paper, we use smoothness of the class $C^{\infty}$.
Keywords: manifold, topological group, compact-open topology.
Mots-clés : foliation
@article{INTO_2020_181_a9,
     author = {A. Ya. Narmanov and A. S. Sharipov},
     title = {On the diffeomorphism groups of foliated manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {74--83},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a9/}
}
TY  - JOUR
AU  - A. Ya. Narmanov
AU  - A. S. Sharipov
TI  - On the diffeomorphism groups of foliated manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 74
EP  - 83
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a9/
LA  - ru
ID  - INTO_2020_181_a9
ER  - 
%0 Journal Article
%A A. Ya. Narmanov
%A A. S. Sharipov
%T On the diffeomorphism groups of foliated manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 74-83
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a9/
%G ru
%F INTO_2020_181_a9
A. Ya. Narmanov; A. S. Sharipov. On the diffeomorphism groups of foliated manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 74-83. http://geodesic.mathdoc.fr/item/INTO_2020_181_a9/

[1] Gromol D., Klingenberg V., Meier V., Rimanova geometriya v tselom, Mir, M., 1971

[2] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981 | MR

[3] Lukatskii A. M., “Konechnoporozhdennost grupp diffeomorfizmov”, Usp. mat. nauk., 33:1 (199) (1978), 219–220 | MR

[4] Lukatskii A. M., “Issledovanie geodezicheskogo potoka na beskonechnomernoi gruppe Li s ispolzovaniem operatora koprisoedinennogo deistviya”, Tr. Mat. in-ti im. V. A. Steklova RAN., 267 (2009), 204–213 | MR

[5] Narmanov A. Ya., “O geometrii vpolne geodezicheskikh rimanovykh sloenii”, Mat. tr., 2:2 (1999), 98–106 | MR | Zbl

[6] Narmanov A. Ya., Saitova S., “O geometrii orbit vektornykh polei Killinga”, Differ. uravn., 50:12 (2014), 1582–1589 | Zbl

[7] Narmanov A. Ya., Skorobogatov D., “Izometricheskie otobrazheniya sloenii”, Dokl. Akad. nauk Resp. Uzbekistan., 2004, no. 4, 12–16

[8] Rokhlin V. A., Fuks D. B., Nachalnyi kurs topologii. Geometricheskie glavy, Nauka, M., 1977 | MR

[9] Arnold V., “Sur la geometrie differentielle des groupes de Lie de dimenzion infnite et ses applications a l'hidrodynamique des uides parfaits”, Ann. Inst. Fourier., 16:1 (1966), 319–361 | DOI | MR | Zbl

[10] Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, Toronto, 1978 | MR | Zbl

[11] Myers S., Steenrod N., “The group of isometries of a Riemannian manifold”, Ann. Math., 40:2 (1939), 400–416 | DOI | MR

[12] Narmanov A., Sharipov A., “On the group of foliation isometries”, Meth. Funct. Anal. Topol., 15:2 (2009), 195–200 | MR | Zbl

[13] Omori H., “On the group of diffeomorphisms on a compact manifold”, Proc. Symp. Pure Math., 15 (1970), 167–183 | DOI | MR | Zbl

[14] Omori H., “Groups of diffeomorphisms and thier subgroups”, Trans. Am. Math. Soc, 179 (1973), 85–122 | DOI | MR | Zbl

[15] Tondeur P., Foliations on Riemannian Manifolds, Springer-Verlag, New York, 1988 | MR | Zbl