Reconstruction of a triangle on a plane by three projections
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 59-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the following problem. On the plane, a triangle $\triangle ABC$ and three straight lines $l_{1}$, $l_{2}$, and $l_{3}$ in the general position are given; the locations of the straight lines are unknown. The problem consists of the reconstruction of the triangle $\triangle ABC$ by the known lengths of the sides of the triangles $\triangle A_{1}B_{1}C_{1}$, $\triangle A_{2}B_{2}C_{2}$, and $\triangle A_{3}B_{3}C_{3}$, which are the projections of the triangle $\triangle ABC$ onto the lines $l_{1}$, $l_{2}$, and $l_{3}$. Similar problems and their multidimensional generalizations are of interest in the theory of computer images.
Keywords: triangle, small-angle computed tomography.
@article{INTO_2020_181_a7,
     author = {M. V. Kurkina and S. P. Semenov and V. V. Slavskii},
     title = {Reconstruction of a triangle on a plane by three projections},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {59--65},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a7/}
}
TY  - JOUR
AU  - M. V. Kurkina
AU  - S. P. Semenov
AU  - V. V. Slavskii
TI  - Reconstruction of a triangle on a plane by three projections
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 59
EP  - 65
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a7/
LA  - ru
ID  - INTO_2020_181_a7
ER  - 
%0 Journal Article
%A M. V. Kurkina
%A S. P. Semenov
%A V. V. Slavskii
%T Reconstruction of a triangle on a plane by three projections
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 59-65
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a7/
%G ru
%F INTO_2020_181_a7
M. V. Kurkina; S. P. Semenov; V. V. Slavskii. Reconstruction of a triangle on a plane by three projections. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 59-65. http://geodesic.mathdoc.fr/item/INTO_2020_181_a7/

[1] Gubareni N. M., Vychislitelnye metody i algoritmy malorakursnoi kompyuternoi tomografii, Naukova dumka, Kiev, 1997

[2] Kurkina M.V., “Ob odnom tomograficheskom svoistve treugolnika na ploskosti”, Tr. Mezhdunar. (44-ya Vserossiisk.) molodezhn. shk.-konf. «Sovremennye problemy matematiki» (Ekaterinburg, 27 yanvarya — 2 fevralya 2013 g.), In-t matematiki UrO RAN, Ekaterinburg, 2013, 354–357

[3] Hartley R., Zisserman A., Multiple View Geometry in Computer Vision, Cambridge Univ. Press, 2000 | MR | Zbl