Examples of affine-metric structures on an almost Hermitian manifold
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 30-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

On an almost Hermitian manifold, we construct an affine subspace of affine connections by using the covariant differential of the almost complex structure on the Riemannian connection of a pseudo-Riemannian metric. We find possible dimensions of this space. For the $8$-dimensional space, we find multidimensional planes of connections that determine post-Riemannian geometries. We also find connections for which the torsion tensor is determined only by the structural tensor or only by the virtual tensor. We fond connections in which the covariant differential of the almost complex structure is determined only by the structural tensor or only by the virtual tensor.
Keywords: affine connection, almost Hermitian manifold
Mots-clés : conformal transformation.
@article{INTO_2020_181_a4,
     author = {L. A. Ignatochkina and Yu. A. Gorginyan},
     title = {Examples of affine-metric structures on an almost {Hermitian} manifold},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {30--40},
     publisher = {mathdoc},
     volume = {181},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_181_a4/}
}
TY  - JOUR
AU  - L. A. Ignatochkina
AU  - Yu. A. Gorginyan
TI  - Examples of affine-metric structures on an almost Hermitian manifold
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 30
EP  - 40
VL  - 181
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_181_a4/
LA  - ru
ID  - INTO_2020_181_a4
ER  - 
%0 Journal Article
%A L. A. Ignatochkina
%A Yu. A. Gorginyan
%T Examples of affine-metric structures on an almost Hermitian manifold
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 30-40
%V 181
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_181_a4/
%G ru
%F INTO_2020_181_a4
L. A. Ignatochkina; Yu. A. Gorginyan. Examples of affine-metric structures on an almost Hermitian manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 3, Tome 181 (2020), pp. 30-40. http://geodesic.mathdoc.fr/item/INTO_2020_181_a4/

[1] Baburova O. V., Frolov B. N., Matematicheskie osnovy sovremennoi teorii gravitatsii, Prometei, M., 2012

[2] Katanaev M. O., Geometricheskie metody v matematicheskoi fizike, arXiv: 1311.0733v3 [math.ph]

[3] Kirichenko V. F., “Obobschennye klassy Greya––Khervelly i golomorfno-proektivnye preobrazovaniya obobschennykh pochti ermitovykh struktur”, Izv. RAN. Ser. mat., 69:5 (2005), 107-–132 | MR | Zbl

[4] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013

[5] Gray A., Hervella L., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. IV., 123 (1980), 35–58 | DOI | MR | Zbl

[6] Puetzfeld D., Tresguerres R., “A cosmological model in Weyl–Cartan spacetime”, Class. Quantum Grav., 18 (2001), 677–694 | DOI | MR