On Dini helicoids in the Minkowski space
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 50-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dini helicoid is a surface obtained by screw motion of the tractrix. In this paper, we consider various analogs of the Dini helicoid in the three-dimensional Minkowski space. As profiles, we take nontrivial pseudo-Euclidean analogs of the tractrix different from pseudo-Euclidean circles. We prove that on analogs of the Dini helicoid in a the pseudo-Euclidean space, one of the following metrics is induced: the metric of the Lobachevsky plane, the metric of the de Sitter plane, or the degenerate metric.
Keywords: Lobachevsky plane, de Sitter plane, Dini helicoid.
@article{INTO_2020_180_a6,
     author = {A. V. Kostin},
     title = {On {Dini} helicoids in the {Minkowski} space},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {50--57},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a6/}
}
TY  - JOUR
AU  - A. V. Kostin
TI  - On Dini helicoids in the Minkowski space
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 50
EP  - 57
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a6/
LA  - ru
ID  - INTO_2020_180_a6
ER  - 
%0 Journal Article
%A A. V. Kostin
%T On Dini helicoids in the Minkowski space
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 50-57
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a6/
%G ru
%F INTO_2020_180_a6
A. V. Kostin. On Dini helicoids in the Minkowski space. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 50-57. http://geodesic.mathdoc.fr/item/INTO_2020_180_a6/

[1] Kostin A. V., “Gelikoidy Dini v prostranstve Minkovskogo”, Mezhdunar. konf. «Dni geometrii v Novosibirske–2013», 2013, 52

[2] Kostin A. V., “Ob asimptoticheskikh liniyakh na psevdosfericheskikh poverkhnostyakh”, Vladikavkaz. mat. zh., 21:1 (2019), 14–24

[3] Kostin A. V., Kostina N. N., “Ob evolyutakh nekotorykh krivykh na psevdoevklidovoi ploskosti”, Tr. Mezhdunar. shkoly-seminara po geometrii i analizu pamyati N. V. Efimova, 2004, 34–35

[4] Albujer A. L., Caballero M., “Geometric properties of surfaces with the same mean curvature in $\mathbb R^3$ and $\mathbb L^3$”, J. Math. Anal. Appl., 445:1 (2017), 1013–1024 | DOI | MR | Zbl

[5] Barros M., Caballero M., Ortega M., “Rotational surfaces in ${\mathbb{L}^3}$ and solutions of the nonlinear sigma model”, Commun. Math. Phys., 290:2 (2009), 437–477 | DOI | MR | Zbl

[6] Bour E., “Memoire sur le deformation de surfaces”, J. Ecole Polytechn., 39 (1862), 1–148

[7] Dini U., “Sur les surface à courbure constante négative et les surfaces applicables sur les surfaces à aire minima”, C. R. Acad. Sci., 1865, 340–341

[8] Güler E., Vanli A. T., “Bour’s theorem in Minkowski 3-space”, J. Math. Kyoto Univ., 46:1 (2006), 47–63 | DOI | MR | Zbl

[9] Ikawa T., “Bour's theorem in Minkowski geometry”, Tokyo J. Math., 24:2 (2001), 377–394 | DOI | MR | Zbl

[10] Ji F., Kim Y. H., “Isometries between minimal helicoidal surfaces and rotation surfaces in Minkowski space”, Appl. Math. Comput., 220 (2013), 1–11 | DOI | MR | Zbl

[11] Lopez R., “Differential geometry of curves and surfaces in Lorentz–Minkowski space”, Int. Electron. J. Geom., 7:1 (2014), 44–107 | DOI | MR | Zbl

[12] Lopez R., Kaya S., “New examples of maximal surfaces in Lorentz–Minkowski space”, Kyushu J. Math., 71:2 (2017), 311–327 | DOI | MR | Zbl