On prescribed values of the operator of sectional curvature on three-dimensional locally homogeneous Lorentzian manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 41-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the problem of prescribed values of the operator of sectional curvature on a three-dimensional locally homogeneous Lorentzian manifolds is solved. Necessary and sufficient conditions for the operator of sectional curvature of such manifolds are obtained.
Keywords: Lie algebra, left-invariant Lorentzian metric, curvature operator, spectrum.
Mots-clés : Lie group
@article{INTO_2020_180_a5,
     author = {S. V. Klepikova and O. P. Khromova},
     title = {On prescribed values of the operator of sectional curvature on three-dimensional locally homogeneous {Lorentzian} manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {41--49},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a5/}
}
TY  - JOUR
AU  - S. V. Klepikova
AU  - O. P. Khromova
TI  - On prescribed values of the operator of sectional curvature on three-dimensional locally homogeneous Lorentzian manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 41
EP  - 49
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a5/
LA  - ru
ID  - INTO_2020_180_a5
ER  - 
%0 Journal Article
%A S. V. Klepikova
%A O. P. Khromova
%T On prescribed values of the operator of sectional curvature on three-dimensional locally homogeneous Lorentzian manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 41-49
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a5/
%G ru
%F INTO_2020_180_a5
S. V. Klepikova; O. P. Khromova. On prescribed values of the operator of sectional curvature on three-dimensional locally homogeneous Lorentzian manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 41-49. http://geodesic.mathdoc.fr/item/INTO_2020_180_a5/

[1] Gladunova O. P., Oskorbin D. N., “Primenenie paketov simvolnykh vychislenii k issledovaniyu spektra operatora krivizny na metricheskikh gruppakh Li”, Izv. AltGU., 1-1 (77) (2013), 19–23

[2] Oskorbin D. N., Rodionov E. D., “O spektre operatora krivizny trekhmernykh grupp Li s levoinvariantnoi rimanovoi metrikoi”, Dokl. RAN., 450:3 (2013), 271–273 | MR | Zbl

[3] Rodionov E. D., Slavskii V. V., Chibrikova L. N., “Lokalno konformno odnorodnye psevdorimanovy prostranstva”, Mat. tr., 9:1 (2006), 130–168 | MR | Zbl

[4] Bueken P., Djorić M., “Three-dimensional Lorentz metrics and curvature homogeneity of order one”, Ann. Glob. Anal. Geom., 18 (2000), 85–103 | DOI | MR | Zbl

[5] Calvaruso G., “Homogeneous structures on three-dimensional Lorentzian manifolds”, J. Geom. Phys., 57 (2007), 1279–1291 | DOI | MR | Zbl

[6] Calvaruso G., “Pseudo-Riemannian $3$-manifolds with prescribed distinct constant Ricci eigenvalues”, Differ. Geom. Appl., 26 (2008), 419–433 | DOI | MR | Zbl

[7] Calvaruso G., Kowalski O., “On the Ricci operator of locally homogeneous Lorentzian $3$-manifolds”, Cent. Eur. J. Math., 7:1 (2009), 124–139 | MR | Zbl

[8] Cordero L. A., Parker P. E., “Left-invariant Lorentzian metrics on 3-dimensional Lie groups”, Rend. Mat., 17 (1997), 129–155 | MR | Zbl

[9] Kowalski O., “Nonhomogeneous Riemannian $3$-manifolds with distinct constant Ricci eigenvalues”, Nagoya Math. J., 132 (1993), 1–36 | DOI | MR | Zbl

[10] Kowalski O., Nikcevic S., “On Ricci eigenvalues of locally homogeneous Riemann $3$-manifolds”, Geom. Dedic., 1996, no. 1, 65–72 | DOI | MR | Zbl

[11] Mikeš J., Stepanova E., Vanžurová A. et al., Differential Geometry of Special Mappings, Palacký University, Olomouc, 2015 | MR | Zbl

[12] Mikeš J., Vanžurová A., “Reconstruction of an affine connection in generalized Fermi coordinates”, Bull. Malays. Math. Sci. Soc., 40:1 (2017), 205–213 | DOI | MR | Zbl

[13] Milnor J., “Curvature of left invariant metric on Lie groups”, Adv. Math., 21 (1976), 293–329 | DOI | MR | Zbl