The space of affine connections of an almost Hermitian manifold
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 31-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider affine connections determined by an almost Hermitian structure of a smooth manifold. We prove that the affine space of connections considered has dimension $12$ if and only if the Lie form of the almost Hermitian structure is nonzero. We find connections that define post-Riemannian geometries and almost Hermitian connections in the class $W_4$. We examine a conformal transformation of an almost Hermitian structure and an affine mapping of connections generated by this transformation and find a connection invariant under this mapping.
Keywords: affine connection, almost Hermitian manifold
Mots-clés : conformal transformation.
@article{INTO_2020_180_a4,
     author = {Yu. A. Gorginyan and L. A. Ignatochkina},
     title = {The space of affine connections of an almost {Hermitian} manifold},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {31--40},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a4/}
}
TY  - JOUR
AU  - Yu. A. Gorginyan
AU  - L. A. Ignatochkina
TI  - The space of affine connections of an almost Hermitian manifold
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 31
EP  - 40
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a4/
LA  - ru
ID  - INTO_2020_180_a4
ER  - 
%0 Journal Article
%A Yu. A. Gorginyan
%A L. A. Ignatochkina
%T The space of affine connections of an almost Hermitian manifold
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 31-40
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a4/
%G ru
%F INTO_2020_180_a4
Yu. A. Gorginyan; L. A. Ignatochkina. The space of affine connections of an almost Hermitian manifold. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 31-40. http://geodesic.mathdoc.fr/item/INTO_2020_180_a4/

[1] Baburova O. V., Frolov B. N., Matematicheskie osnovy sovremennoi teorii gravitatsii, Prometei, M., 2012

[2] Ignatochkina L. A., “Lokalnoe stroenie mnogoobrazii Vaismana—Greya”, Sovr. mat. prilozh. Geom. anal., 96 (2015), 70–80

[3] Katanaev M. O., Geometricheskie metody v matematicheskoi fizike, arXiv: 1311.0733v3 [math.ph]

[4] Kirichenko V. F., “Obobschennye klassy Greya—Khervelly i golomorfno-proektivnye preobrazovaniya obobschennykh pochti ermitovykh struktur”, Izv. RAN. Ser. mat., 69:5 (2005), 107-–132 | MR | Zbl

[5] Kirichenko V. F., Differentsialno-geometricheskie struktury na mnogoobraziyakh, Pechatnyi dom, Odessa, 2013

[6] Stepanov S. E., Gordeeva I. A., “Geometriya mnogoobrazii Rimana—Kartana”, Vestn. KemGU., 3:1 (2001), 168–181 | MR

[7] Gray A., Hervella L., “The sixteen classes of almost Hermitian manifolds and their linear invariants”, Ann. Mat. Pura Appl. IV., 123 (1980), 35–58 | DOI | MR | Zbl

[8] Smalley L. L., “Brans–Dicke-type models with nonmetricity”, Phys. Rev. D., 33 (1986), 3590–3593 | DOI | MR