Mobility spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 17-22
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider spaces generalizing Galileo spaces endowed with an action of a nonlinear transformation group. We prove that such spaces correspond to the space-time of a dynamics whose fundamental equations have order ${>}2$.
Keywords:
Galilean space, dynamic equation.
Mots-clés : motion group
Mots-clés : motion group
@article{INTO_2020_180_a2,
author = {M. P. Burlakov},
title = {Mobility spaces},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {17--22},
year = {2020},
volume = {180},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/}
}
M. P. Burlakov. Mobility spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 17-22. http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/
[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979
[4] Kosmodemyanskii A. A., Teoreticheskaya mekhanika i sovremennaya tekhnika, Prosveschenie, M., 1969
[5] Mizner Ch., Torn K., Uiler Dzh., Gravitatsiya. T. 1, Mir, M., 1977
[6] Einshtein A., “Ob efire”, Sobranie nauchnykh trudov, Nauka, M., 1966
[7] Yaglom I. M., Printsip otnositelnosti Galileya i neevklidova geometriya, Nauka, M., 1969