Mobility spaces
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 17-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider spaces generalizing Galileo spaces endowed with an action of a nonlinear transformation group. We prove that such spaces correspond to the space-time of a dynamics whose fundamental equations have order ${>}2$.
Keywords: Galilean space, dynamic equation.
Mots-clés : motion group
@article{INTO_2020_180_a2,
     author = {M. P. Burlakov},
     title = {Mobility spaces},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/}
}
TY  - JOUR
AU  - M. P. Burlakov
TI  - Mobility spaces
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 17
EP  - 22
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/
LA  - ru
ID  - INTO_2020_180_a2
ER  - 
%0 Journal Article
%A M. P. Burlakov
%T Mobility spaces
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 17-22
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/
%G ru
%F INTO_2020_180_a2
M. P. Burlakov. Mobility spaces. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 17-22. http://geodesic.mathdoc.fr/item/INTO_2020_180_a2/

[3] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1979

[4] Kosmodemyanskii A. A., Teoreticheskaya mekhanika i sovremennaya tekhnika, Prosveschenie, M., 1969

[5] Mizner Ch., Torn K., Uiler Dzh., Gravitatsiya. T. 1, Mir, M., 1977

[6] Einshtein A., “Ob efire”, Sobranie nauchnykh trudov, Nauka, M., 1966

[7] Yaglom I. M., Printsip otnositelnosti Galileya i neevklidova geometriya, Nauka, M., 1969