Planar space with projective connection
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

A projective space in which a linear group acts ineffectively allows one to construct the corresponding space of Cartan projective connection. We show that the structure equations of the Cartan space allow one to obtain differential equations for the components of the projective curvature-torsion tensor. This tensor contains the torsion tensor, the extended torsion tensor, and the affine curvature-torsion tensor. An analog of the Bianchi identities is found. A generalizable algorithm for constructing structure equations of the space of Cartan projective connection is formulated. Using a generalized algorithm, we construct the structure equations of the planar space of projective connection, whose special cases are the ruled space of Akivis projective connection, point space of Cartan projective connection, and its dual hyperplanar space of projective connection. We also prove that the curvature-torsion tensor of a plane space with projective connection has three subtensors, one of which is an analog of the torsion tensor of the Cartan space.
Keywords: space of Cartan projective connection, curvature-torsion tensor, analog of Bianchi identities, ruled space of projective connection, planar space of projective connection.
@article{INTO_2020_180_a16,
     author = {Yu. I. Shevchenko and E. V. Skrydlova},
     title = {Planar space with projective connection},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {113--119},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a16/}
}
TY  - JOUR
AU  - Yu. I. Shevchenko
AU  - E. V. Skrydlova
TI  - Planar space with projective connection
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 113
EP  - 119
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a16/
LA  - ru
ID  - INTO_2020_180_a16
ER  - 
%0 Journal Article
%A Yu. I. Shevchenko
%A E. V. Skrydlova
%T Planar space with projective connection
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 113-119
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a16/
%G ru
%F INTO_2020_180_a16
Yu. I. Shevchenko; E. V. Skrydlova. Planar space with projective connection. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 113-119. http://geodesic.mathdoc.fr/item/INTO_2020_180_a16/

[10] Akivis M. A., “Ob izoklinnykh tri-tkanyakh i ikh interpretatsii v lineichatom prostranstve proektivnoi svyaznosti”, Sib. mat. zh., 15:1 (1974), 3–15 | Zbl

[11] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Kalinin, 1977

[12] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Probl. geom., 9 (1979), 3–248

[13] Kartan E., Prostranstvo affinnoi, proektivnoi i konformnoi svyaznosti, Iz-vo Kazan. un-ta, 1962

[14] Kobayasi Sh., Gruppy preobrazovanii v differentsialnoi geometrii, M., 1986

[15] Laptev G. F., “Differentsialnaya geometriya pogruzhennykh mnogoobrazii”, Tr. Mosk. mat. o-va., 2 (1953), 275–382 | Zbl

[16] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin. VINITI., 1 (1966), 139–189 | Zbl

[17] Shevchenko Yu. I., “Struktura osnascheniya mnogoobraziya lineinykh figur”, Tez. dokl. VI Pribalt. geom. konf., Tallin, 1984, 136–137

[18] Shevchenko Yu. I., “Tsentroproektivnaya svyaznost v prostranstve proektivnoi svyaznosti Kartana”, Diff. geom. mnogoobr. figur., 36 (2005), 154–160 | Zbl

[19] Shevchenko Yu. I., “Golonomnye i polugolonomnye podmnogoobraziya gladkikh mnogoobrazii”, Diff. geom. mnogoobr. figur., 46 (2015), 168–177 | Zbl