Surfaces in the quasi-hyperbolic space $^{11}S^1_3$
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 109-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Quasi-hyperbolic spaces are projective spaces with decomposable absolute. In this paper, we analyze surfaces in such spaces using the method of external forms and the method of movable frames. Geometric characteristics of invariants of lines on such surfaces are found. Analogs of Foss surfaces are obtained.
Keywords: quasi-hyperbolic space, absolute, canonical frame, line on the surface, geodesic line.
Mots-clés : surface, invariant
@article{INTO_2020_180_a15,
     author = {V. B. Tsyrenova},
     title = {Surfaces in the quasi-hyperbolic space $^{11}S^1_3$},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {109--112},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/}
}
TY  - JOUR
AU  - V. B. Tsyrenova
TI  - Surfaces in the quasi-hyperbolic space $^{11}S^1_3$
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 109
EP  - 112
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/
LA  - ru
ID  - INTO_2020_180_a15
ER  - 
%0 Journal Article
%A V. B. Tsyrenova
%T Surfaces in the quasi-hyperbolic space $^{11}S^1_3$
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 109-112
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/
%G ru
%F INTO_2020_180_a15
V. B. Tsyrenova. Surfaces in the quasi-hyperbolic space $^{11}S^1_3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 109-112. http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/

[3] Gureva V. P., Abdurakhmanova Kh. K., “K teorii poverkhnostei v trekhmernykh kvaziellipticheskom i kvazigiperbolicheskikh prostranstvakh”, Geom. sb., 1976, no. 17, 132–139 | MR

[4] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969

[5] Slobodskoi V. I., “Teoriya poverkhnostei v trekhmernom kvazigiperbolicheskom prostranstve $^{11}S^1_3$”, Geom. sb., 1980, no. 21, 55–67 | Zbl

[6] Tsyrenova V. B., “K teorii poverkhnostei v kvaziellipticheskom prostranstve”, Geom. sb., 1978, no. 19, 96–108 | Zbl

[7] Tsyrenova V. B., “Poverkhnosti v kvazigiperbolicheskom prostranstve $^{11}S^1_3$”, Mat. 5 nauch. konf., posv. 100-letiyu prof. R. N. Scherbakova «Geometriya mnogoobrazii i ee prilozheniya», Ulan-Ude, 2018, 56–60

[8] Tsyrenova V. B., Scherbakov R. N., “Osnovy teorii poverkhnostei trekhmernogo kvaziellipticheskogo prostranstva”, Geom. sb., 1975, no. 15, 183–204 | MR | Zbl

[9] Scherbakov R. N., Kurs affinnoi i proektivnoi differentsialnoi geometrii, Izd-vo Tomsk. un-ta, Tomsk, 1960 | MR