Mots-clés : surface, invariant
@article{INTO_2020_180_a15,
author = {V. B. Tsyrenova},
title = {Surfaces in the quasi-hyperbolic space $^{11}S^1_3$},
journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
pages = {109--112},
year = {2020},
volume = {180},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/}
}
TY - JOUR
AU - V. B. Tsyrenova
TI - Surfaces in the quasi-hyperbolic space $^{11}S^1_3$
JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY - 2020
SP - 109
EP - 112
VL - 180
UR - http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/
LA - ru
ID - INTO_2020_180_a15
ER -
V. B. Tsyrenova. Surfaces in the quasi-hyperbolic space $^{11}S^1_3$. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 109-112. http://geodesic.mathdoc.fr/item/INTO_2020_180_a15/
[3] Gureva V. P., Abdurakhmanova Kh. K., “K teorii poverkhnostei v trekhmernykh kvaziellipticheskom i kvazigiperbolicheskikh prostranstvakh”, Geom. sb., 1976, no. 17, 132–139 | MR
[4] Rozenfeld B. A., Neevklidovy prostranstva, Nauka, M., 1969
[5] Slobodskoi V. I., “Teoriya poverkhnostei v trekhmernom kvazigiperbolicheskom prostranstve $^{11}S^1_3$”, Geom. sb., 1980, no. 21, 55–67 | Zbl
[6] Tsyrenova V. B., “K teorii poverkhnostei v kvaziellipticheskom prostranstve”, Geom. sb., 1978, no. 19, 96–108 | Zbl
[7] Tsyrenova V. B., “Poverkhnosti v kvazigiperbolicheskom prostranstve $^{11}S^1_3$”, Mat. 5 nauch. konf., posv. 100-letiyu prof. R. N. Scherbakova «Geometriya mnogoobrazii i ee prilozheniya», Ulan-Ude, 2018, 56–60
[8] Tsyrenova V. B., Scherbakov R. N., “Osnovy teorii poverkhnostei trekhmernogo kvaziellipticheskogo prostranstva”, Geom. sb., 1975, no. 15, 183–204 | MR | Zbl
[9] Scherbakov R. N., Kurs affinnoi i proektivnoi differentsialnoi geometrii, Izd-vo Tomsk. un-ta, Tomsk, 1960 | MR