Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_180_a12, author = {L. Ryparova and J. Mike\v{s}}, title = {Rotation mappings and rotation transformations}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {91--95}, publisher = {mathdoc}, volume = {180}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a12/} }
TY - JOUR AU - L. Ryparova AU - J. Mikeš TI - Rotation mappings and rotation transformations JO - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory PY - 2020 SP - 91 EP - 95 VL - 180 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/INTO_2020_180_a12/ LA - ru ID - INTO_2020_180_a12 ER -
L. Ryparova; J. Mikeš. Rotation mappings and rotation transformations. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 91-95. http://geodesic.mathdoc.fr/item/INTO_2020_180_a12/
[1] Leiko S. G., “Povorotnye diffeomorfizmy na poverkhnostyakh evklidova prostranstva”, Mat. zametki., 47:3 (1990), 52–57 | MR | Zbl
[2] Leiko S. G., “Variatsionnye zadachi dlya funktsionalov povorota i spin-otobrazheniya psevdorimanovykh prostranstv”, Izv. vuzov. Mat., 1990, no. 10, 9–17 | MR
[3] Leiko S. G., “Ekstremali funktsionalov povorota krivykh psevdorimanova prostranstva i traektorii spin-chastits v gravitatsionnykh polyakh”, Dokl. RAN., 325:4 (1992), 659–663 | Zbl
[4] S. G. Leiko, “Infinitezimalnye povorotnye preobrazovaniya i deformatsii poverkhnostei evklidova prostranstva”, Dokl. RAN., 344:2 (1995), 162–164 | MR | Zbl
[5] Leiko S. G., “Izoperimetricheskie ekstremali povorota na poverkhnostyakh v evklidovom prostranstve $E^3$”, Izv. vuzov. Mat., 1996, no. 6, 25–32 | MR | Zbl
[6] Leiko S. G., “O konformnykh, kontsirkulyarnykh i spinovykh otobrazheniyakh gravitatsionnykh polei”, Mat. metody fiz.-mekh. polya., 40:2 (1997), 44–47 | MR
[7] Leiko S. G., “Povopotnye ppeobpazovaniya povepkhnostei”, Mat. fiz., anal., geom., 5:3/4 (1998), 203–211 | MR
[8] Leiko S. G., “Izoperimetricheskie zadachi dlya funktsionalov povorota pervogo i vtorogo poryadkov v (psevdo)rimanovykh mnogoobraziyakh”, Izv. vuzov. Mat., 2005, no. 5, 49–55 | Zbl
[9] Leiko S. G., Fedchenko Yu. S., “Infinitezimalni povorotni deformatsiï poverkhon ta ïkh zastosuvannya v teoriï pruzhnikh obolonok”, Ukr. mat. zh., 55:12 (2003), 1697–1703 | MR | Zbl
[10] Leiko S. G., al Khussen C., “Povorotnye kvazikontsirkulyarnye difeeomorfizmy na (psevdo)rimanovykh prostranstvakh”, Mat. metody fiz.-mekh. polya., 44:1 (2001), 22–27 | MR | Zbl
[11] Mikesh I., Ryparova L., Khuda G., “K teorii povorotnykh otobrazhenii”, Mat. zametki., 104:4 (2018), 637–640
[12] Chudá H., Mikeš J., Sochor M., “Rotary diffeomorphism onto manifolds with affine connection”, Geometry, Integrability, and Quantization, v. 18, Bulgar. Acad. Sci., Sofia, 2017, 130–137 | DOI | MR | Zbl
[13] Hinterleitner I., “Special mappings of equidistant spaces”, J. Appl. Math., 2 (2008), 31–36
[14] Leiko S. G., “Conservation laws for spin trajectories generated by isoperimetric extremals of rotation”, Grav. Theor. Relativ., 26 (1988), 117–124
[15] Mikeš J. et al., Differential Geometry of Special Mappings, Palacky Univ. Press, Olomouc, Czech Republic, 2015 | MR | Zbl
[16] Mikeš J., Sochor M., Stepanova E., “On the existence of isoperimetric extremals of rotation and the fundamental equations of rotary diffeomorphisms”, Filomat., 29:3 (2015), 517–523 | DOI | MR | Zbl
[17] Rýparová L., Křížek J., Mikeš J., “On fundamental equations of rotary vector fields”, Proc. 18th Conf. APLIMAT., 2019, 1030–1034 | MR
[18] Rýparová L., Mikeš J., “On rotary mappings of surfaces of revolution”, Proc. Int. Conf. “MITAV-2017” (Brno, June 15-16, 2017), Brno, 2017, 208–216
[19] Rýparová L., Mikeš J., “Infinitesimal rotary transformation”, Filomat, 33:4 (2019) | DOI | MR