Voir la notice de l'article provenant de la source Math-Net.Ru
@article{INTO_2020_180_a11, author = {K. V. Polyakova}, title = {Higher-order normals on manifolds}, journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory}, pages = {85--90}, publisher = {mathdoc}, volume = {180}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/} }
K. V. Polyakova. Higher-order normals on manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/
[1] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Kalinin, 1977
[2] Baburova O. V., Frolov B. N., Matematicheskie osnovy sovremennoi teorii gravitatsii, Prometei, M., 2012
[3] Belova O. O., “Grassmanopodobnoe mnogoobrazie tsentrirovannykh ploskostei”, Mat. zametki., 104:6 (2018), 812–822 | Zbl
[4] Veblen O., Uaitkhed Dzh., Osnovaniya differentsialnoi geometrii, IL, M., 1949
[5] Vosilyus R. V., “Kontravariantnaya teoriya differentsialnogo prodolzheniya v modeli prostranstva so svyaznostyu”, Itogi nauki i tekhn. Probl. geom., 14 (1983), 101–176 | MR
[6] Gursa E., Kurs matematicheskogo analiza, GITTL, M.-L., 1933
[7] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Probl. geom., 9 (1979), 5–246
[8] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin. VINITI., 1 (1966), 139–189 | Zbl
[9] Polyakova K. V., “Dvoistvennye metody issledovaniya differentsialno-geometricheskikh struktur”, Differ. geom. mnogoobr. figur., 45 (2014), 92–104 | Zbl
[10] Polyakova K. V., “Spetsialnye affinnye svyaznosti 1-go i 2-go poryadkov”, Differ. geom. mnogoobr. figur., 46 (2015), 114–128 | Zbl
[11] Polyakova K. V., “O zadanii affinnoi svyaznosti 2-go poryadka vektornoznachnymi formami 1-go, 2-go i 3-go poryadkov”, Differ. geom. mnogoobr. figur., 47 (2016), 108–125 | Zbl
[12] Polyakova K. V., “Tangentsialnoznachnye formy 2-go poryadka”, Mat. zametki., 105:1 (2019), 84–94 | MR | Zbl
[13] Rybnikov A. K., “Ob affinnykh svyaznostyakh vtorogo poryadka”, Mat. zametki., 29:2 (1981), 279–290 | MR | Zbl
[14] Rybnikov A. K., “Ob obobschennykh affinnykh svyaznostyakh vtorogo poryadka”, Izv. vuzov. Mat., 1983, no. 1, 73–80 | Zbl
[15] Sardanashvili G. A., Geometriya i klassicheskie polya. Sovremennye metody teorii polya. T. 1, URSS, M., 1996 | MR | Zbl
[16] Shevchenko Yu. I., Osnascheniya golonomnykh i negolonomnykh gladkikh mnogoobrazii, Kaliningrad, 1998
[17] Catuogno P., “A geometric Itô formula”, Mat. Contemp., 33 (2005), 85–99 | MR