Higher-order normals on manifolds
Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

On an $n$-dimensional smooth manifold, we consider higher-order normals of two types, i.e., the spaces that complement the tangent space of orders $1$ or ${r-1}$ to the tangent space of order $r$. We prove that the derivatives of some basic vectors in the direction of the given first-order (second-order) basis vectors are equal to the values on these vectors of the first-order (second-order) differentials of the first vectors. Using the differentials of basic tangent vectors of the first and second orders, we construct mappings from the set of first-order tangent vectors to the set of second- and third-orders normal vectors. Also, we introduce mappings that generate horizontal second- and third-order vectors for the canonical first- and second- order affine connections, respectively.
Keywords: differential form, normal on a manifold, affine connection.
Mots-clés : tangent space
@article{INTO_2020_180_a11,
     author = {K. V. Polyakova},
     title = {Higher-order normals on manifolds},
     journal = {Itogi nauki i tehniki. Sovremenna\^a matematika i e\"e prilo\v{z}eni\^a. Temati\v{c}eskie obzory},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {180},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/}
}
TY  - JOUR
AU  - K. V. Polyakova
TI  - Higher-order normals on manifolds
JO  - Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
PY  - 2020
SP  - 85
EP  - 90
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/
LA  - ru
ID  - INTO_2020_180_a11
ER  - 
%0 Journal Article
%A K. V. Polyakova
%T Higher-order normals on manifolds
%J Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory
%D 2020
%P 85-90
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/
%G ru
%F INTO_2020_180_a11
K. V. Polyakova. Higher-order normals on manifolds. Itogi nauki i tehniki. Sovremennaâ matematika i eë priloženiâ. Tematičeskie obzory, Proceedings of the International Conference "Classical and Modern Geometry" Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Tome 180 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/INTO_2020_180_a11/

[1] Akivis M. A., Mnogomernaya differentsialnaya geometriya, Kalinin, 1977

[2] Baburova O. V., Frolov B. N., Matematicheskie osnovy sovremennoi teorii gravitatsii, Prometei, M., 2012

[3] Belova O. O., “Grassmanopodobnoe mnogoobrazie tsentrirovannykh ploskostei”, Mat. zametki., 104:6 (2018), 812–822 | Zbl

[4] Veblen O., Uaitkhed Dzh., Osnovaniya differentsialnoi geometrii, IL, M., 1949

[5] Vosilyus R. V., “Kontravariantnaya teoriya differentsialnogo prodolzheniya v modeli prostranstva so svyaznostyu”, Itogi nauki i tekhn. Probl. geom., 14 (1983), 101–176 | MR

[6] Gursa E., Kurs matematicheskogo analiza, GITTL, M.-L., 1933

[7] Evtushik L. E., Lumiste Yu. G., Ostianu N. M., Shirokov A. P., “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Probl. geom., 9 (1979), 5–246

[8] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin. VINITI., 1 (1966), 139–189 | Zbl

[9] Polyakova K. V., “Dvoistvennye metody issledovaniya differentsialno-geometricheskikh struktur”, Differ. geom. mnogoobr. figur., 45 (2014), 92–104 | Zbl

[10] Polyakova K. V., “Spetsialnye affinnye svyaznosti 1-go i 2-go poryadkov”, Differ. geom. mnogoobr. figur., 46 (2015), 114–128 | Zbl

[11] Polyakova K. V., “O zadanii affinnoi svyaznosti 2-go poryadka vektornoznachnymi formami 1-go, 2-go i 3-go poryadkov”, Differ. geom. mnogoobr. figur., 47 (2016), 108–125 | Zbl

[12] Polyakova K. V., “Tangentsialnoznachnye formy 2-go poryadka”, Mat. zametki., 105:1 (2019), 84–94 | MR | Zbl

[13] Rybnikov A. K., “Ob affinnykh svyaznostyakh vtorogo poryadka”, Mat. zametki., 29:2 (1981), 279–290 | MR | Zbl

[14] Rybnikov A. K., “Ob obobschennykh affinnykh svyaznostyakh vtorogo poryadka”, Izv. vuzov. Mat., 1983, no. 1, 73–80 | Zbl

[15] Sardanashvili G. A., Geometriya i klassicheskie polya. Sovremennye metody teorii polya. T. 1, URSS, M., 1996 | MR | Zbl

[16] Shevchenko Yu. I., Osnascheniya golonomnykh i negolonomnykh gladkikh mnogoobrazii, Kaliningrad, 1998

[17] Catuogno P., “A geometric Itô formula”, Mat. Contemp., 33 (2005), 85–99 | MR